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Abstract—We consider a remote monitoring system where a
monitor displays the latest state information obtained from a
time-varying information source. Assuming that the information
source is represented as a continuous-time Markov chain, we
analyze the effect of the age of information (AoI) on the
accuracy of the monitoring system. We first obtain the conditional
probability of the displayed state, given the actual current state
of the information source. We then derive simple lower and
upper bounds for the probability that the actual current state
is displayed. Finally, we develop a computing method of these
probabilities for a special case that the information source is
represented as a reversible Markov chain.

I. INTRODUCTION

We consider a situation that the state of a time-varying
information source is monitored remotely. Specifically, the
information source is attached with a sensor node, which
sends observed data to a remote server. The server processes
the received data and sends extracted state information to a
monitor that displays the latest state information received.
Because the state of the information source changes over time,
the value of displayed information degenerates with time. It is
thus important for such a system that the displayed information
on the monitor is kept sufficiently fresh.

The age of information (AoI) [1] is a widely used metric
of the freshness of information, which is defined as the
elapsed time from the generation time of currently displayed
information. Specifically, the AoI At at time t is defined as

At = t− ηt, t ∈ R, (1)

where ηt denotes the generation time of the displayed informa-
tion at time t. The mean AoI E[A] is the primary performance
measure of interest, which is defined as

E[A] = lim
T→∞

1

T

∫ T/2

−T/2

Atdt.

Under a fairly general setting, the mean AoI E[A] is given in
terms of the mean inter-sampling time, the mean delay, and a
cross-term of the inter-sampling time and the delay [1].

To characterize the delay formally, the system is usually
modeled as a queueing system. Based on the general formula,
various analytical results for the mean AoI E[A] has been
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derived in the literature. In [1], first-come first-served (FCFS)
queues are analyzed. Last-come first-served (LCFS) queues are
considered in [2] and [3], where newer data is given priority
in transmission and processing. A multi-class FCFS queue is
considered in [4], which is extended to a system with priority
mechanism in [5]. To model a situation that the sensor node
communicates with the server through a network, multi-server
queueing models are considered in [6].

In designing a monitoring system, one needs to keep the
AoI sufficiently small, so that the monitor accurately displays
the current state of the information source. Intuitively, a fairly
large value of the AoI would be acceptable if the information
source is slowly varying in time, and otherwise, a strict limit
for the AoI would be imposed. Therefore, a target value of the
AoI (or precisely, target statistical properties of the AoI such
as the mean and variance) is highly dependent on the nature
of the information source dynamics.

There are only a few works that discuss relations between
the AoI and the dynamics of the information source in the
literature. The age of channel state information of a wireless
link is considered in [7], where the channel state is modeled as
a discrete-time two-state Markov chain. In [8], the information
source is assumed to be a Wiener process, and an optimal
sampling policy minimizing the mean square error between
the actual and displayed states is derived. It is also shown in
[8] that if the AoI process is independent of the monitored
Wiener process, the mean squared error is equal to the mean
AoI E[A]. In [9], the mutual information between the actual
and displayed states is proposed as a metric for the freshness
of information, assuming a discrete-time Markov chain for
the information source. Solving an optimal sampling problem
under a more general setting, a sampling policy maximizing
the mutual information is derived in [9].

In this paper, we consider a continuous-time monitoring
system where the information source is represented as a
finite-state Markov chain, and the AoI process (At)t∈R is
an ergodic stochastic process independent of the information
source. As we will see, the information aging in our system
is characterized by a matrix (denoted by R), whose (i, j)th
element represents the probability that state j is displayed on
the monitor, given that the actual current state is equal to i. The
main contributions of this paper are summarized as follows:

(i) We derive an expression for the matrix R, in terms of
the probability distribution of the AoI [10].



(ii) We derive lower and upper bounds for diagonal elements
of R, i.e., the conditional probabilities that the monitor
correctly displays the current state of the information
source, given the actual current state. In particular, the
lower bound is given in terms of the product of the
mean AoI and information source’s transition rate, which
provides a simple criteria to ensure the performance of
the monitoring system.

(iii) For a special case that the Markov chain is reversible, we
develop a computing method for the matrix R. We also
provide some numerical examples, and discuss the gap
between the lower bound and diagonal elements of R.

The rest of this paper is organized as follows. In Section
II, we formally describe our system model. In Section III, we
present analytical results for a general case, and develop a
computing method for the reversible case. In Section IV, we
provide some numerical examples. Finally, we conclude this
paper in Section V.

II. MODEL

A. Information source

We consider an information source whose state takes a value
in a finite set M = {1, 2, . . . ,M}. Let Yt (t ∈ R) denote
the state of the information source at time t. Throughout this
paper, we assume the following:

Assumption 1. (Yt)t∈R is stationary and ergodic.

We call the information source satisfying Assumption 1 the
general information source. Let π := (π1, π2, . . . , πM ) denote
the stationary probability vector of (Yt)t∈R:

πi = Pr(Yt = i), i ∈ M.

We also consider a Markovian information source, where
(Yt)t∈R forms a finite-state continuous-time Markov chain [11,
Chapter 8] satisfying Assumption 1. Note that the Markov
chain (Yt)t∈R is characterized by transition rates qi,j (i ∈ M,
j ∈ M, j ̸= i), where qi,j ≥ 0. We define qi (i ∈ M) as

qi =
∑

j∈M,j ̸=i

qi,j .

The Markov chain stays at state i (i ∈ M) for exponentially
distributed length of time with mean 1/qi, and then transitions
to state j (j ∈ M, j ̸= i) with probability qi,j/qi.

Let Q denote the infinitesimal generator of (Yt)t∈R, which
is an M ×M matrix whose (i, j)th element is given by

[Q]i,j =

{
−qi j = i,
qi,j j ̸= i.

By definition, Q has negative diagonal elements and nonneg-
ative offdiagonal elements, which satisfy

Qe = 0,

where e := (1, 1, . . . , 1)⊤ denotes an M × 1 vector of ones.
It is well known that the transition probabilities of this

Markov chain is given by a matrix exponential function:

Pr(Yt+x = j | Yt = i) =
[
exp[Qx]

]
i,j
, t ∈ R, x ≥ 0.

Note that the transition probabilities do not depend on the
initial time t. We define P (x) (x ≥ 0) as the transition
probability matrix of this Markov chain:

P (x) = exp[Qx]. (2)

Note that the stationary probability vector π is uniquely
determined by the balance equation πQ = 0, πe = 1.

B. Monitoring system

The state (Yt)t∈R of the information source is sampled at
time t̂n (n ∈ Z) and it is notified to the monitor at tn, where
t̂n < t̂n+1, tn < tn+1, and t̂n ≤ tn for all n ∈ Z. Without loss
of generality, we assume t0 = 0. Let ηt := t̂sup{n; tn≤t} (t ∈
R) denote the generation time of the information displayed on
the monitor at time t. The AoI At (t ∈ R) at time t is then
given by (1).

Let Ŷt (t ∈ R) denote the state of the information source
displayed on the monitor at time t:

Ŷt = Yt−At .

We make the following assumptions.

Assumption 2. (At)t∈R is stationary and ergodic.

Assumption 3. (Yt)t∈R and (At)t∈R are independent and
jointly ergodic [12].

Remark 1. (Yt)t∈R and (At)t∈R are jointly ergodic if (Yt)t∈R
is mixing and (At)t∈R is ergodic [12, Theorem 2]. Note that
the ergodic Markovian information source is mixing.

Remark 2. Under Assumptions 1 to 3, the following relation
holds sample-path wise with probability one [13, Page 50]:

E[ϕ(A0, Y0)] = lim
T→∞

1

T

∫ T/2

−T/2

ϕ(At, Yt)dt,

where ϕ(x, y) (x ≥ 0, y ≥ 0) denotes any non-negative
function for which E[ϕ(A0, Y0)] exists.

Because of the stationarity, the distribution of the AoI At

(t ∈ R) is independent of t. Let A denote a generic random
variable following the probability distribution of At. We define
A(x) := Pr(A ≤ x) (x ≥ 0) as the probability distribution
function of A.

C. Performance measure

To evaluate the accuracy of the monitoring system, we
consider the conditional probability that state j is displayed
on the monitor, given that the actual current state of the
information source is equal to i:

ri,j := Pr(Ŷt = j | Yt = i), i ∈ M, j ∈ M.

From Remark 2, we can verify that the following relation holds
sample-path wise with probability one:

ri,j = lim
T→∞

∫ T/2

−T/2

1{Yt=i}1{Ŷt=j}dt∫ T/2

−T/2

1{Yt=i}dt

. (3)



ri,j thus represents the long-run fraction of time that state j
is displayed, given that the actual state is equal to i.

Various performance measures for the monitoring system
can be represented in terms of ri,j (i ∈ M, j ∈ M).

Example 1. In [9], the mutual information of (Yt)t∈R and
(Ŷt)t∈R is proposed as a metric for the freshness of informa-
tion. By definition, the mutual information is given by∑

i∈M

∑
j∈M

πiri,j log

(
πiri,j
πiπ̂j

)
,

where π̂j := Pr(Ŷ = j). We will show π̂j = πj in Lemma 1.

Example 2. Assume that we have a distance function d(i, j)
(i ∈ M, j ∈ M) for the state space M. The following
performance measures quantify the accuracy of the monitoring
system.

• Mean error between (Yt)t∈R and (Ŷt)t∈R:∑
i∈M

∑
j∈M

πiri,jd(i, j).

• Maximum mean error between (Yt)t∈R and (Ŷt)t∈R:

max
i∈M

∑
j∈M

ri,jd(i, j).

• Probability that the error between (Yt)t∈R and (Ŷt)t∈R
exceeds a given threshold dth:∑

i∈M

∑
j∈{k∈M; d(i,k)>dth}

πiri,j .

Associated with ri,j , we also define ri,j as the probability
that the current state of the information source is equal to j,
given that state i is displayed on the monitor:

ri,j = Pr(Yt = j | Ŷt = i), i ∈ M, j ∈ M.

Similarly to (3), we have

ri,j = lim
T→∞

∫ T/2

−T/2

1{Yt=j}1{Ŷt=i}dt∫ T/2

−T/2

1{Ŷt=i}dt

,

i.e., ri,j is equal to the long-run fraction of time that the actual
current state is equal to j, given that state i is displayed.

While ri,j is considered to be a performance measure
representing the accuracy of the monitoring system for state
i, ri,j provides an estimate for the current state given the
displayed state i. We define R and R as M × M matrices
whose (i, j)th elements are given by ri,j and ri,j :

[R]i,j = ri,j , [R]i,j = ri,j , i ∈ M, j ∈ M.

III. MAIN RESULTS

A. A monitoring system for a general information source

We first consider a monitoring system for a general infor-
mation source.

Lemma 1. Under Assumptions 1 to 3, (Ŷt)t∈R is a stationary
stochastic process with

Pr(Ŷt = i) = πi, i ∈ M. (4)

Proof. For x1 ≤ x2 · · · ≤ xn and iℓ ∈ M (ℓ = 1, 2, . . . , n),

Pr(Ŷt+xℓ
= iℓ, ℓ ∈ {1, 2, . . . , n})

= Pr(Yt+xℓ−At+xℓ
= iℓ, ℓ ∈ {1, 2, . . . , n})

= Pr(Yxℓ−Axℓ
= iℓ, ℓ ∈ {1, 2, . . . , n})

= Pr(Ŷxℓ
= iℓ, ℓ ∈ {1, 2, . . . , n}),

where the second equality follows from the assumption that
(Yt)t∈R and (At)t∈R are independent stationary stochastic
processes. We also obtain (4) from the stationarity and in-
dependence of (Yt)t∈R and (At)t∈R:

Pr(Ŷt = i) =

∫ ∞

0

Pr(Yt−x = i)dA(x)

= Pr(Yt = i)

∫ ∞

0

dA(x)

= πi.

Remark 3. From Remark 2 and Lemma 1, the following
relation holds sample-path wise with probability one:

lim
T→∞

1

T

∫ T/2

−T/2

1{Ŷt=i}dt = Pr(Ŷ0 = i) = πi, i ∈ M.

Theorem 1. Under Assumptions 1 to 3, ri,j and ri,j (i ∈ M,
j ∈ M) are related by

ri,j =
πjrj,i
πi

, i ∈ M, j ∈ M. (5)

In particular, we have

ri,i = ri,i, i ∈ M. (6)

Proof. (5) follows from Lemma 1 and Bayes’ formula, and
(6) follows from (5).

In view of (6), we introduce {ri}i∈M for ri,i and ri,i.

ri := ri,i = ri,i, i ∈ M. (7)

Note that ri (i ∈ M) is our primary quantity of interest.

B. A monitoring system for a Markovian information source

In this subsection, we consider a monitoring system for a
Markovian information source under Assumptions 1 to 3. We
rewrite (5) in a matrix form:

R = Π−1R
⊤
Π, (8)

where Π denotes an M ×M diagonal matrix whose ith (i ∈
M) diagonal element is given by πi.



Theorem 2. R and R are given by

R =

∫ ∞

0

exp
[
(Π−1Q⊤Π)x

]
dA(x), (9)

R =

∫ ∞

0

exp[Qx]dA(x). (10)

Remark 4. Π−1Q⊤Π in (9) can be regarded as the infinites-
imal generator of the time-reversed process (Y−t)t∈R of the
Markovian information source [14, Page 28].

Proof. Noting (8), we can verify that (10) implies (9). It thus
suffices to prove (10). From Assumptions 2 and 3, we have

ri,j = Pr(Yt = j | Yt−At
= i)

=

∫ ∞

x=0

Pr(Yt = j | Yt−x = i)dA(x)

=

∫ ∞

x=0

[P (x)]i,jdA(x). (11)

(10) thus follows from (2).

As stated in Theorem 1, R and R have the same diagonal
elements {ri}i∈M, which can also be verified by Theorem 2.
Below we derive lower and upper bounds for ri (i ∈ M).

Let a∗(s) (Re(s) > 0) denote the Laplace-Stieltjes trans-
form (LST) of the AoI distribution:

a∗(s) = E[exp[−sA]] =

∫ ∞

0

exp[−sx]dA(x).

Theorem 3. ri (i ∈ M) in (7) is bounded by

a∗(qi) ≤ ri ≤ 1− (a∗(qmax)− a∗(qi + qmax)), (12)

where qmax := maxi∈M qi.

Proof. We first consider the lower bound. By definition,

[P (x)]i,i = Pr(Yx = i | Y0 = i)

≥ Pr(Yt = i for t ∈ [0, x] | Y0 = i) = exp[−qix].

We then obtain the lower bound in (12) from (7) and (11).
We next consider the upper bound. We rewrite [P (x)]i,i as

[P (x)]i,i = 1−
∑

j∈M,j ̸=i

[exp[Qx]]i,j

= 1−
∑

j∈M,j ̸=i

∫ x

0

qi exp[−qit]

·
∑

k∈M,k ̸=i

qi,k
qi

[P (x− t)]k,jdt.

From this equation, we have

[P (x)]i,i

≤ 1−
∑

k∈M,k ̸=i

∫ x

0

qi exp[−qit] ·
qi,k
qi

· [P (x− t)]k,kdt

≤ 1−
∑

k∈M,k ̸=i

qi,k
qi

∫ x

0

qi exp[−qit] exp[−qk(x− t)]dt

≤ 1−
∑

k∈M,k ̸=i

qi,k
qi

∫ x

0

qi exp[−qit] exp[−qkx]dt

= 1−
∑

k∈M,k ̸=i

exp[−qkx] ·
qi,k
qi

(1− exp[−qix])

≤ 1− exp[−qmaxx](1− exp[−qix])
∑

k∈M,k ̸=i

qi,k
qi

= 1− (exp[−qmaxx]− exp[−(qi + qmax)x]).

We thus obtain the upper bound in (12) from (7) and (11).

Corollary 1. If E[A] < ∞, ri is bounded by

1− qiE[A] ≤ ri ≤ 1− qiE[A] +
(qi + qmax)

2

2
E[A2]. (13)

Remark 5. The lower bound in (13) offers a simple criteria
to ensure the accuracy of the monitoring system. Specifically,
in order to ensure ri ≥ 1 − ϵ for some ϵ > 0, it is sufficient
to design the system so that E[A] ≤ ϵ/qi.

Proof. Note that for any θ ≥ 0 and x ≥ 0,

1− θx ≤ exp[−θx] ≤ 1− θx+
θ2x2

2
,

so that

1− θE[A] ≤ a∗(θ) ≤ 1− θE[A] +
θ2E[A2]

2
.

Using this relation, we can derive (13) from (12) with straight-
forward calculations.

C. A special case: reversible Markovian information source

In this subsection, we develop a computing method for R,
assuming that the Markovian information source (Yt)t∈R is
reversible [14], i.e., its time-reversed process (Y−t)t∈R follows
the same probability law as the original process (Yt)t∈R.
Specifically, we make the following assumption in addition
to Assumptions 1 to 3.

Assumption 4. In the Markov chain (Yt)t∈R, detailed balance
equations hold:

πiqi,j = πjqj,i, i ∈ M, j ∈ M. (14)

It is known that (14) is a necessary and sufficient condition
for the Markov chain being reversible [14]. Note that we can
rewrite (14) as ΠQ = Q⊤Π, which implies Q = Π−1Q⊤Π
(cf. Remark 4). Therefore, it follows from (9) and (10) that

R = R, (15)

which is almost obvious from the time-reversibility.
Let D denote an M×M diagonal matrix whose ith (i ∈ M)

element is given by
√
πi. We define an M ×M matrix S as

S = DQD−1. (16)

It follows from (14) that S is a real symmetric matrix, which
can be verified with Q⊤ = ΠQΠ−1:

S⊤ = D−1Q⊤D = D−1(ΠQΠ−1)D = DQD−1 = S.

Owing to the properties of real symmetric matrices, all eigen-
values of S are real-valued, and S is diagonizable by an
orthogonal matrix U = (u1,u2, . . . ,uM ), where uk (k ∈ M)



denotes a normalized right eigenvector (i.e., u⊤
k uk = 1) of S

associated with the kth largest eigenvalue γk:

S =

M∑
k=1

γkuku
⊤
k .

Note that Q and S have the same set of eigenvalues. It
then follows from Perron-Frobenius theorem that γ1 = 0 and
γk < 0 (k = 2, 3, . . . ,M ). We then define θk := −γk. By
definition, θk > 0 (k = 2, 3, . . . ,M ), and Q is rewritten as

Q =

M∑
k=2

(−θk)D
−1uku

⊤
k D. (17)

Remark 6. D−1uk (resp. u⊤
k D) denotes a right (resp. left)

eigenvector of Q associated with the kth largest eigenvalue
−θk. In particular, we can verify that for some constant c > 0,

D−1u1 = ce, u⊤
1 D = (1/c)π. (18)

Theorem 4. If (Yt)t∈R is a reversible Markov chain, R is
given in terms of the LST a∗(s) of the AoI distribution by

R = eπ +

M∑
k=2

a∗(θk)D
−1uku

⊤
k D. (19)

Proof. It follows from (17) that

exp[Qx] = I +

∞∑
n=1

(Qx)n

n!

= I +

∞∑
n=1

M∑
k=2

(−θkx)
n

n!
·D−1uku

⊤
k D

= I +

M∑
k=2

(exp[−θkx]− 1)D−1uku
⊤
k D

= eπ +

M∑
k=2

exp[−θkx]D
−1uku

⊤
k D, (20)

where the last equality follows from (18) and

M∑
k=1

D−1uku
⊤
k D = D−1UU⊤D = I.

Therefore, we obtain (19) from (10) and (15).

We summarize the computing procedure for R in Fig. 1.
In step (c), we need to compute eigenvalues and eigenvectors
of the real symmetric matrix S, which can be easily done by
means of numerical libraries (see e.g., [15]).

Remark 7. From (20), we have

[exp[Qx]]i,i = πi +

M∑
k=2

bi,k exp[−θkx],

where

bi,k := [uku
⊤
k ]i,i = ([uk]i)

2, i ∈ M, k ∈ M.

Input: Q, a∗(θ) (θ > 0).
Output: R.
(a) Compute the stationary probability vector π.
(b) Compute the real symmetric matrix S from (16).
(c) Compute the eigenvalues {γk}k∈M and normalized

eigenvectors {uk}k∈M of S.
(d) Let θk := −γk (k ∈ M).
(e) Compute R by (19).

Fig. 1. Computing procedure for R in the reversible case.
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(b) Grid
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Fig. 2. Markov chains employed in numerical examples.

Because bi,k ≥ 0 (i ∈ M, k ∈ M), [exp[Qx]]i,i is a
decreasing function of x, which converges to the stationary
probability πi in the limit x → ∞.

In addition, it follows from (7) and (19) that

ri = πi +

M∑
k=2

bi,ka
∗(θk).

We can verify that bi,k (i ∈ M, k ∈ M) satisfies∑
k∈M

bi,k =

[∑
k∈M

uku
⊤
k

]
i,i

= [UU⊤]i,i = 1,

∑
i∈M

bi,k =
∑
i∈M

([uk]i)
2 = 1,

i.e., {bi,k}i∈M,k∈M is doubly stochastic.

IV. NUMERICAL EXAMPLES

In this section, we present some numerical examples. For
the information source, we employ three different Markov
chains with the same number of states (M = 36), whose
transition diagrams are shown in Fig. 2. These Markov chains
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Fig. 3. rmin for q = 1 and µ = 64. The bounds are computed by (13).

have fixed transition rate qi = q (i ∈ M) and homogeneous
transition probabilities qi,j/qi = 1/

∑
j∈M 1{qi,j ̸=0}. We can

verify that Assumption 4 holds for these Markov chains.
In addition, we assume that the monitoring system is formu-

lated as a stationary FCFS D/M/1 queue, i.e., inter-sampling
times are constant equal to 1/λ (λ > 0), and service times are
exponentially distributed with mean 1/µ (µ > 0). Analytical
results for the AoI distribution in the FCFS D/M/1 queue can
be found in [10]:

a∗(s) =

[
ρ · µ− µβ

s+ µ− µβ
+ g̃∗(s)− g̃∗(s+ µ− µβ)

]
µ

s+ µ
,

E[A] =

(
1

2ρ
+

1

1− β

)
1

µ
,

E[A2] =

(
2

(
1

1− β

)2

+
1

(1− β)ρ
+

1

3ρ2

)(
1

µ

)2

,

where g̃(s) := (1 − e−s/λ)/(s/λ), and β denotes the unique
solution of x = g∗(µ− µx) (0 < x < 1).

Let rmin := mini∈M ri. In Fig. 3, rmin and bounds in (13)
are plotted as functions of λ for q = 1 and µ = 64. In this
case, there is little difference in rmin among the three Markov
chains. Also, the lower bound 1 − qE[A] well approximates
rmin, except for extremely small or large values of λ.

For a given µ, we can numerically obtain an optimal value
of λ which maximizes rmin. We can also compute an optimal
λ which minimizes the mean AoI E[A], or equivalently,
maximizes the lower bound 1 − qE[A]. In Fig. 4, rmin for
optimal λ and 1 − qE[A] are plotted as functions of µ for
q = 1. From this figure, we observe that when µ takes a small
value, rmin takes diverse values depending on the transition
structure of the information source. Also, the lower bound
1−qE[A] greatly underestimates rmin when µ is small. When
µ takes a large value, on the other hand, the value of rmin is
almost independent of the transition structure, and it is well
approximated by the lower bound 1− qE[A].
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V. CONCLUSION

We considered the effect of the AoI on the accuracy of
a monitoring system. For continuous-time Markovian infor-
mation source, we derived an expression for the conditional
probability of the displayed state, given the actual current state
(Theorem 2). We then derived simple upper and lower bounds
for the probability that the monitor displays the correct state
(Corollary 1). We further developed a computing method for
these probabilities in the special case that the information
source is represented as a reversible Markov chain. Finally, we
presented numerical examples, which suggests that the lower
bound derived in this paper offers a simple yet effective criteria
to ensure the accuracy of the monitoring system.
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