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● When disasters occur, all work in system is removed

workload

disasters occur

time
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● The BMAP/SM/1 queue with disasters
[Dudin and Nishimura (1999)]

◆ Customer arrival, disaster occurrence, and service times

are governed by respective independent
underlying Markov chains

● The BMAP/G/1 queue with disasters [Shin (2004)]

◆ Customer arrival and disaster occurrence

are governed by a common underlying Markov chain

◆ Service times are i.i.d.



Model Considered in This Work
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● Customer arrival and disaster occurrence

are governed by a common underlying Markov chain

● Service requirement distributions of customers

depend on the states of the underlying Markov chain
immediately before and after arrivals



Underlying Markov Chain
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● An irreducible continuous-time Markov chain
with finite state space M = {1,2, . . . , M }

● The underlying Markov chain stays in state i (i ∈M ) for
an exponential interval of time with mean 1/σi

◆ When the sojoun time in i is elapsed

i

neither arrivals 

nor disasters occur

a customer arrives

a disaster occurs
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Representation with Matrices (1)
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● We introduce M ×M matrices C , D(x), and Γ

[

C
]

i , j =











σi pi , j , i 6= j
Transition rate from i to j when neither
customer arrivals nor disasters occur

−σi , i = j σi denotes the transition rate from i

[

D(x)
]

i , j =σi qi , j Bi , j (x)

Transition rate from i to j when
a customer arrives and the amount of
service requirement is not greater than x

[

Γ
]

i , j =σiγi , j
Transition rate from i to j when
a disaster occurs



Representation with Matrices (2)
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● We define D∗(s) and D as

◆ D∗(s) =

∫∞

0
exp(−sx)dD(x), D = lim

x→∞
D(x) = lim

s→0+
D∗(s)

● C +D +Γ : The infinitesimal generator of
the underlying Markov chain

● We assume that D 6= 0 and Γ 6= 0

● The system becomes empty when a disaster occurs

➨ Γ 6= 0 and the irreducibility of the underlying Markov chain
ensure the existance of the steady state
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Outline of the Analysis
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● We consider the first passage time to the idle state, given

◆ the initial workload

◆ the initial state of the underlying Markov chain

With results on the first passage time,

● Two different representations of the LST of
the stationary distribution of work in system

◆ can be derived in a similar way to that
for an ordinary MAP/G/1 queue

■ [Takine and Hasegawa (1994)], [Takine (2002)]
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First Passage Time to the Idle State
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● Classification of the first passage process

◆ No disasters occur in
the first passage time

workload

time
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◆ A disaster occurs in
the first passage time

workload

time
in

it
ia

l 
w

o
rk

lo
a

d

0

first passage time



LST of the First Passage Time
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Ut : The amount of work in system at time t

St : The state of the underlying Markov chain at time t

TE : The time the system first becomes empty after time 0

● P N(t | x) : An M ×M matrix whose (i , j )th element is given by

Pr
(

TE ≤ t , STE
= j , no disasters occur

∣

∣U0 = x, S0 = i
)

◆ P∗
N(s | x) : The LST of P N(t | x) with respect to t

● P D(t | x) : An M ×M matrix whose (i , j )th element is given by

Pr
(

TE ≤ t , STE
= j , a disaster occurs

∣

∣U0 = x, S0 = i
)

◆ P∗
D(s | x) : The LST of P D(t | x) with respect to t



Properties of the First Passage Time
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● No disasters occur in the first passage time

◆ P∗
N

(s | x + y) = P∗
N

(s | x) ·P∗
N

(s | y)

● A disaster occurs in the first passage time

◆ P∗
D

(s | x + y) = P∗
D

(s | x)+P∗
N

(s | x) ·P∗
D

(s | y)
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● A disaster occurs in the first passage time
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Formulas for P∗
N(s | x) and P∗

D(s | x)
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● The properties of the first passage time yields

◆ P∗
N(s | x) = exp

(

Q∗
N(s)x

)

(3)

◆ P∗
D(s | x) =

∫x

0
exp

(

Q∗
N(s)w

)

d w ·Q∗
D(s) (5)

where Q∗
N(s) and Q∗

D(s) are defined as

◆ Q∗
N(s) = −sI +C +

∫∞

0
dD(y)P∗

N(s | y) (4)

◆ Q∗
D(s) = Γ+

∫∞

0
dD(y)P∗

D(s | y) (6)



State transition in the first passage time
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● P∗
N(0 | x) = lim

s→0+
P∗

N(s | x), P∗
D(0 | x) = lim

s→0+
P∗

D(s | x)

◆
[

P∗
N

(0 | x)
]

i , j = Pr
(

STE
= j , no disasters occur

∣

∣U0 = x, S0 = i
)

◆
[

P∗
D

(0 | x)
]

i , j = Pr
(

STE
= j , a disaster occurs

∣

∣U0 = x, S0 = i
)

● P∗
N

(0 | x) and P∗
D

(0 | x) are given by

◆ P∗
N(0 | x) = exp

(

QNx
)

◆ P∗
D(0 | x) =

∫x

0
exp

(

QNw
)

d w ·QD

QN = lim
s→0+

Q∗
N(s) = C +

∫∞

0
dD(y)P∗

N(0 | y) (9)

QD = lim
s→0+

Q∗
D(s) = Γ+

∫∞

0
dD(y)P∗

D(0 | y) (10)



Probabilistic Interpretation of QN and QD
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● Remove all busy periods from the time axis

◆ QN +QD represents the infinitesimal generator of
the resultant censored underlying Markov chain

workload

time



Probabilistic Interpretation of QN and QD
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QN +QD : The infinitesimal generator of
the censored underlying Markov chain

● QN = C +

∫∞

0
dD(y)P∗

N(0 | y) (9)

◆ QN represents the deficit infinitesimal generator when

■ neither arrivals nor disasters occur
■ busy periods without disasters are removed

● QD = Γ +

∫∞

0
dD(y)P∗

D(0 | y) (10)

◆ QD represents the transition rate matrix when

■ disasters occur in the idle state
■ busy periods ending with disasters are removed
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Computation of QN and QD
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● We define Q (n)
N

(n = 0,1, . . .) by the following recursion

Q (0)
N

=C , Q (n)
N

=C +

∫∞

0
dD(y)exp

(

Q (n−1)
N

y
)

(19)

◆ Q (n)
N

is an elementwise increasing sequence of matrices

● QN is given by QN = lim
n→∞

Q (n)
N

● QD is given by QD = (−QN)
[

−(C +D)
]−1

Γ (13)

◆ C +D : The deficit infinitesimal generator of the underlying
Markov chain when no disasters occur

➨ It is nonsingular
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Mean First Passage Time
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● f (x) : An M ×1 vector whose i th element is given by

◆
[

f (x)
]

i = E
[

The first passage time |U0 = x,S0 = i
]

● f (x) = (−1) · lim
s→0+

∂

∂s

[

P∗
N(s | x)+P∗

D(s | x)
]

e (20)

◆ e : An M ×1 vector whose elements are all equal to one

● f (x) is given in terms of QN

f (x) =
[

I −exp
(

QNx
)][

−(C +D)
]−1

e (21)
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Idle Probability
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● κ : The conditional steady state probability vector,
given that the system is idle

◆ [κ] j = lim
t→∞

Pr(St = j |Ut = 0)

● ν : The steady state probability that the system is busy

◆ ν = lim
t→∞

Pr(Ut > 0)

● κ and ν are given in terms of QN and QD

◆ κ is determined uniquely by

κ(QN +QD) = 0, κe = 1 (17)

◆ ν is given by
ν = 1 −

1

κ(−QN)[−(C +D)]−1e
(32)
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Work in System
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Ut : The amount of work in system at time t

St : The state of the underlying Markov chain at time t

● u t (x) : A 1×M vector whose j th element is given by

◆
[

u t (x)
]

j = Pr(Ut ≤ x, St = j )

● We define 1×M vectors u(x) and u∗(s) as

◆ u(x) = lim
t→∞

u t (x)

◆ u∗(s) =

∫∞

0
exp(−sx)du(x)

● We derive two different representations of u∗(s)
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Transition from time t to t +∆t
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time

a customer arrives

neither arrivals
nor disasters occur

a disaster occurs

t+∆tt

x

x–∆t

workload

0

● u t+∆t (x) = u t (x +∆t )C∆t +

∫x

0
u t (x − y +∆t )dD(y)∆t

+ u t (∞)Γ∆t + o(∆t )



LST of the Workload Distribution u∗(s)
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● u t+∆t (x) = u t (x +∆t )C∆t +

∫x

0
u t (x − y +∆t )dD(y)∆t

+ u t (∞)Γ∆t + o(∆t )

➨
∂

∂t

[

u t (x)
]

=
∂

∂x

[

u t (x)
]

+u t (x)C +

∫∞

0
u t (x − y)dD(y)+u t (∞)Γ

● Take the limit t →∞

◆ 0 =
d

d x

[

u(x)
]

+u(x)C +

∫∞

0
u(x − y)dD(y)+πΓ

● Take the LST with respect to x

u∗(s)
[

sI +C +D∗(s)
]

= s(1−ν)κ−πΓ (33)



Preemptive-Resume LIFO
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● Assume that customers are served on
a preemptive-resume LIFO basis

◆ This service discipline is work conserving

● u∗(s,k) : The LST of the workload distribution
when k customers are present in the system

◆ u∗(s,0) = (1−ν)κ

◆ u∗(s) =

∞
∑

k=0

u∗(s,k)



Alternavite Representation of u∗(s)
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When there is k customers in the system

● Workload in system is equal to the sum of
the remaining service requirements of

◆ k −1 waiting cusotmers

◆ the customer being served

time

workload

residual service requirements
of k–1 customers

a customer arrived 
when there was 
k–1 customers



Alternavite Representation of u∗(s)
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When there is k customers in the system

● Workload in system is equal to the sum of
the remaining service requirements of

◆ k −1 waiting cusotmers

◆ the customer being served

● u∗(s,k) = u∗(s,k −1)R∗(s), k = 1,2, . . . (41)

◆ R∗(s) =

∫∞

0
exp(−sx)d x

∫∞

x
dD(y)exp

(

QN(y −x)
)

(38)

● u∗(s) =
∞
∑

k=0

u∗(s,k) = (1−ν)κ
[

I −R∗(s)
]−1 (45)

◆ It is shown that I −R∗(s) (Re(s) > 0) is nonsingular



Conclusion

27 / 27

● We considered the workload distribution
in a MAP/G/1 queue with disasters

◆ We derived two different formulas

u∗(s)
[

sI +C +D∗(s)
]

= (1−ν)κ−πΓ (33)

u∗(s) = (1−ν)κ
[

I −R∗(s)
]−1 (45)

◆ We showed that these formulas are equivalent
in a sense that one can be derived from another

● We have already finished an additional analysis

on the queue length, the waiting time, and the sojourn time
in a FIFO MAP/G/1 queue with disasters

● We are going to submit a paper with these results to JIMO
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