The Workload Distribution in a MAP/G/1 Queue with Disasters

*Yoshiaki Inoue and Tetsuya Takine
Department of ICT
Osaka University

Queueing Model with Disasters

- When disasters occur, all work in system is removed

Related Works

- The BMAP/SM/1 queue with disasters
[Dudin and Nishimura (1999)]
- Customer arrival, disaster occurrence, and service times are governed by respective independent underlying Markov chains
- The BMAP/G/1 queue with disasters [Shin (2004)]
- Customer arrival and disaster occurrence
are governed by a common underlying Markov chain
- Service times are i.i.d.

Model Considered in This Work

- Customer arrival and disaster occurrence
are governed by a common underlying Markov chain
- Service requirement distributions of customers
depend on the states of the underlying Markov chain immediately before and after arrivals

Underlying Markov Chain

- An irreducible continuous-time Markov chain with finite state space $\mathscr{M}=\{1,2, \ldots, M\}$
- The underlying Markov chain stays in state $i(i \in \mathscr{M})$ for an exponential interval of time with mean $1 / \sigma_{i}$
- When the sojoun time in i is elapsed
probability

Representation with Matrices (1)

- We introduce $M \times M$ matrices $\boldsymbol{C}, \boldsymbol{D}(x)$, and $\boldsymbol{\Gamma}$

$$
[\boldsymbol{C}]_{i, j}=\left\{\begin{array}{ccl}
\sigma_{i} p_{i, j}, & i \neq j & \begin{array}{l}
\text { Transition rate from } i \text { to } j \text { when neither } \\
\text { customer arrivals nor disasters occur }
\end{array} \\
-\sigma_{i}, & i=j & \sigma_{i} \text { denotes the transition rate from } i
\end{array}\right.
$$

$$
[\boldsymbol{D}(x)]_{i, j}=\sigma_{i} q_{i, j} B_{i, j}(x) \quad \begin{aligned}
& \text { Transition rate from } i \text { to } j \text { when } \\
& \text { a customer arrives and the amount of } \\
& \text { service requirement is not greater than } x
\end{aligned}
$$

$$
[\boldsymbol{\Gamma}]_{i, j}=\sigma_{i} \gamma_{i, j}
$$

Transition rate from i to j when a disaster occurs

Representation with Matrices (2)

- We define $\boldsymbol{D}^{*}(s)$ and \boldsymbol{D} as
$-\boldsymbol{D}^{*}(s)=\int_{0}^{\infty} \exp (-s x) d \boldsymbol{D}(x), \quad \boldsymbol{D}=\lim _{x \rightarrow \infty} \boldsymbol{D}(x)=\lim _{s \rightarrow 0+} \boldsymbol{D}^{*}(s)$
- $\boldsymbol{C}+\boldsymbol{D}+\boldsymbol{\Gamma}$: The infinitesimal generator of the underlying Markov chain
- We assume that $D \neq 0$ and $\Gamma \neq 0$
- The system becomes empty when a disaster occurs
$\Rightarrow \Gamma \neq 0$ and the irreducibility of the underlying Markov chain ensure the existance of the steady state

Representation with Matrices (2)

- We define $\boldsymbol{D}^{*}(s)$ and \boldsymbol{D} as
$\boldsymbol{D}^{*}(s)=\int_{0}^{\infty} \exp (-s x) d \boldsymbol{D}(x), \quad \boldsymbol{D}=\lim _{x \rightarrow \infty} \boldsymbol{D}(x)=\lim _{s \rightarrow 0+} \boldsymbol{D}^{*}(s)$
- $\boldsymbol{C}+\boldsymbol{D}+\boldsymbol{\Gamma}$: The infinitesimal generator of the underlying Markov chain
- We assume that $\boldsymbol{D} \neq \mathbf{0}$ and $\Gamma \neq \mathbf{0}$
- The system becomes empty when a disaster occurs
$\Rightarrow \boldsymbol{\Gamma} \neq \mathbf{0}$ and the irreducibility of the underlying Markov chain ensure the existance of the steady state

Outline of the Analysis

- We consider the first passage time to the idle state, given
- the initial workload
- the initial state of the underlying Markov chain

With results on the first passage time,

- Two different representations of the LST of the stationary distribution of work in system
- can be derived in a similar way to that for an ordinary MAP/G/1 queue
- [Takine and Hasegawa (1994)], [Takine (2002)]

First Passage Time to the Idle State

First Passage Time to the Idle State

- Classification of the first passage process
- No disasters occur in the first passage time

first passage time
- A disaster occurs in the first passage time

LST of the First Passage Time

U_{t} : The amount of work in system at time t
S_{t} : The state of the underlying Markov chain at time t
T_{E} : The time the system first becomes empty after time 0

- $\boldsymbol{P}_{\mathrm{N}}(t \mid x):$ An $M \times M$ matrix whose (i, j) th element is given by

$$
\operatorname{Pr}\left(T_{\mathrm{E}} \leq t, S_{T_{\mathrm{E}}}=j, \text { no disasters occur } \mid U_{0}=x, S_{0}=i\right)
$$

$\bullet \boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x)$: The LST of $\boldsymbol{P}_{\mathrm{N}}(t \mid x)$ with respect to t

- $\boldsymbol{P}_{\mathrm{D}}(t \mid x)$: An $M \times M$ matrix whose (i, j) th element is given by

$$
\operatorname{Pr}\left(T_{\mathrm{E}} \leq t, S_{T_{\mathrm{E}}}=j, \text { a disaster occurs } \mid U_{0}=x, S_{0}=i\right)
$$

$\bullet \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)$: The LST of $\boldsymbol{P}_{\mathrm{D}}(t \mid x)$ with respect to t

Properties of the First Passage Time

- No disasters occur in the first passage time
$-\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{N}}^{*}(s \mid y)$
- A disaster occurs in the first passage time
$-\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)+\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid y)$

Properties of the First Passage Time

- No disasters occur in the first passage time
$-\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{N}}^{*}(s \mid y)$

Properties of the First Passage Time

- No disasters occur in the first passage time
$-\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{N}}^{*}(s \mid y)$
- A disaster occurs in the first passage time
$-\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)+\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid y)$

Properties of the First Passage Time

- A disaster occurs in the first passage time
$\bullet \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)+\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid y)$

first passage time given initial workload x

first passage time given initial workload x
given initial workload y

Properties of the First Passage Time

- A disaster occurs in the first passage time
$-\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)+P_{\mathrm{N}}^{*}(s \mid x) \cdot P_{\mathrm{D}}^{*}(s \mid y)$

first passage time given initial workload x

first passage time given initial workload x
first passage time given initial workload y

Properties of the First Passage Time

- A disaster occurs in the first passage time
$-\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x+y)=P_{\mathrm{D}}^{*}(s \mid x)+\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid y)$

first passage time given initial workload x

first passage time given initial workload x
given initial workload y

Properties of the First Passage Time

- No disasters occur in the first passage time
$-\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{N}}^{*}(s \mid y)$
- A disaster occurs in the first passage time
$-\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x+y)=\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)+\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x) \cdot \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid y)$

Formulas for $\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x)$ and $\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)$

- The properties of the first passage time yields
- $\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x)=\exp \left(\mathbf{Q}_{\mathrm{N}}^{*}(s) x\right)$
$\rightarrow \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)=\int_{0}^{x} \exp \left(\boldsymbol{Q}_{\mathrm{N}}^{*}(s) w\right) d w \cdot \boldsymbol{Q}_{\mathrm{D}}^{*}(s)$
where $\boldsymbol{Q}_{\mathrm{N}}^{*}(s)$ and $\boldsymbol{Q}_{\mathrm{D}}^{*}(s)$ are defined as
$-\boldsymbol{Q}_{\mathrm{N}}^{*}(s)=-s \boldsymbol{I}+\boldsymbol{C}+\int_{0}^{\infty} d \boldsymbol{D}(y) \boldsymbol{P}_{\mathrm{N}}^{*}(s \mid y)$
- $\boldsymbol{Q}_{\mathrm{D}}^{*}(s)=\boldsymbol{\Gamma}+\int_{0}^{\infty} d \boldsymbol{D}(y) \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid y)$

State transition in the first passage time

- $\boldsymbol{P}_{\mathrm{N}}^{*}(0 \mid x)=\lim _{s \rightarrow 0+} \boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x), \quad \boldsymbol{P}_{\mathrm{D}}^{*}(0 \mid x)=\lim _{s \rightarrow 0+} \boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)$
- $\left[\boldsymbol{P}_{\mathrm{N}}^{*}(0 \mid x)\right]_{i, j}=\operatorname{Pr}\left(S_{T_{\mathrm{E}}}=j\right.$, no disasters occur $\left.\mid U_{0}=x, S_{0}=i\right)$
$\bullet\left[\boldsymbol{P}_{\mathrm{D}}^{*}(0 \mid x)\right]_{i, j}=\operatorname{Pr}\left(S_{T_{\mathrm{E}}}=j\right.$, a disaster occurs $\left.\mid U_{0}=x, S_{0}=i\right)$
- $\boldsymbol{P}_{\mathrm{N}}^{*}(0 \mid x)$ and $\boldsymbol{P}_{\mathrm{D}}^{*}(0 \mid x)$ are given by
- $\boldsymbol{P}_{\mathrm{N}}^{*}(0 \mid x)=\exp \left(\boldsymbol{Q}_{\mathrm{N}} x\right)$
- $\boldsymbol{P}_{\mathrm{D}}^{*}(0 \mid x)=\int_{0}^{x} \exp \left(\boldsymbol{Q}_{\mathrm{N}} w\right) d w \cdot \boldsymbol{Q}_{\mathrm{D}}$

$$
\begin{align*}
& \boldsymbol{Q}_{\mathrm{N}}=\lim _{s \rightarrow 0+} \boldsymbol{Q}_{\mathrm{N}}^{*}(s)=\boldsymbol{C}+\int_{0}^{\infty} d \boldsymbol{D}(y) \boldsymbol{P}_{\mathrm{N}}^{*}(0 \mid y) \tag{9}\\
& \boldsymbol{Q}_{\mathrm{D}}=\lim _{s \rightarrow 0+} \boldsymbol{Q}_{\mathrm{D}}^{*}(s)=\boldsymbol{\Gamma}+\int_{0}^{\infty} d \boldsymbol{D}(y) \boldsymbol{P}_{\mathrm{D}}^{*}(0 \mid y) \tag{10}
\end{align*}
$$

Probabilistic Interpretation of $\boldsymbol{Q}_{\mathrm{N}}$ and $\boldsymbol{Q}_{\mathrm{D}}$

- Remove all busy periods from the time axis
- $\mathbf{Q}_{\mathrm{N}}+\boldsymbol{Q}_{\mathrm{D}}$ represents the infinitesimal generator of the resultant censored underlying Markov chain

Probabilistic Interpretation of $\boldsymbol{Q}_{\mathrm{N}}$ and $\boldsymbol{Q}_{\mathrm{D}}$
$\boldsymbol{Q}_{\mathrm{N}}+\boldsymbol{Q}_{\mathrm{D}}:$ The infinitesimal generator of the censored underlying Markov chain

- $\boldsymbol{Q}_{\mathrm{N}}=\boldsymbol{C}+\int_{0}^{\infty} d \boldsymbol{D}(y) \boldsymbol{P}_{\mathrm{N}}^{*}(0 \mid y)$
- $\boldsymbol{Q}_{\mathrm{N}}$ represents the deficit infinitesimal generator when
- neither arrivals nor disasters occur
- busy periods without disasters are removed
- $Q_{D}=\Gamma+\int_{0}^{\infty} d \boldsymbol{D}(y) \mathbb{P}_{\mathrm{D}}^{*}(0 \mid y)$
- Q_{D} represents the transition rate matrix when
- disasters occur in the idle state
- busy periods ending with disasters are removed

Probabilistic Interpretation of $\boldsymbol{Q}_{\mathrm{N}}$ and $\boldsymbol{Q}_{\mathrm{D}}$
$\boldsymbol{Q}_{\mathrm{N}}+\boldsymbol{Q}_{\mathrm{D}}:$ The infinitesimal generator of the censored underlying Markov chain

- $\boldsymbol{Q}_{\mathrm{N}}=\boldsymbol{C}+\int_{0}^{\infty} d \boldsymbol{D}(y) \boldsymbol{P}_{\mathrm{N}}^{*}(0 \mid y)$
- $\boldsymbol{Q}_{\mathrm{N}}$ represents the deficit infinitesimal generator when
- neither arrivals nor disasters occur
- busy periods without disasters are removed
- $\boldsymbol{Q}_{\mathrm{D}}=\boldsymbol{\Gamma}+\int_{0}^{\infty} d \boldsymbol{D}(y) \boldsymbol{P}_{\mathrm{D}}^{*}(0 \mid y)$
- $\boldsymbol{Q}_{\mathrm{D}}$ represents the transition rate matrix when
- disasters occur in the idle state
- busy periods ending with disasters are removed

Computation of $\boldsymbol{Q}_{\mathrm{N}}$ and $\boldsymbol{Q}_{\mathrm{D}}$

- We define $\boldsymbol{Q}_{\mathrm{N}}^{(n)}(n=0,1, \ldots)$ by the following recursion

$$
\begin{equation*}
\boldsymbol{Q}_{\mathrm{N}}^{(0)}=\boldsymbol{C}, \quad \boldsymbol{Q}_{\mathrm{N}}^{(n)}=\boldsymbol{C}+\int_{0}^{\infty} d \boldsymbol{D}(y) \exp \left(\boldsymbol{Q}_{\mathrm{N}}^{(n-1)} y\right) \tag{19}
\end{equation*}
$$

$-\boldsymbol{Q}_{\mathrm{N}}^{(n)}$ is an elementwise increasing sequence of matrices

- $\boldsymbol{Q}_{\mathrm{N}}$ is given by $\boldsymbol{Q}_{\mathrm{N}}=\lim _{n \rightarrow \infty} \boldsymbol{Q}_{\mathrm{N}}^{(n)}$
- Q_{D} is given by $Q_{D}=\left(-Q_{N}\right)[-(C+D)]^{-1} \Gamma$
$-C+D$: The deficit infinitesimal generator of the underlying Markov chain when no disasters occur
\Rightarrow It is nonsingular

Computation of $\boldsymbol{Q}_{\mathrm{N}}$ and $\boldsymbol{Q}_{\mathrm{D}}$

- We define $\boldsymbol{Q}_{\mathrm{N}}^{(n)}(n=0,1, \ldots)$ by the following recursion

$$
\begin{equation*}
\boldsymbol{Q}_{\mathrm{N}}^{(0)}=\boldsymbol{C}, \quad \boldsymbol{Q}_{\mathrm{N}}^{(n)}=\boldsymbol{C}+\int_{0}^{\infty} d \boldsymbol{D}(y) \exp \left(\boldsymbol{Q}_{\mathrm{N}}^{(n-1)} y\right) \tag{19}
\end{equation*}
$$

$-\boldsymbol{Q}_{\mathrm{N}}^{(n)}$ is an elementwise increasing sequence of matrices

- $\boldsymbol{Q}_{\mathrm{N}}$ is given by $\boldsymbol{Q}_{\mathrm{N}}=\lim _{n \rightarrow \infty} \boldsymbol{Q}_{\mathrm{N}}^{(n)}$
- $\boldsymbol{Q}_{\mathrm{D}}$ is given by $\boldsymbol{Q}_{\mathrm{D}}=\left(-\boldsymbol{Q}_{\mathrm{N}}\right)[-(\boldsymbol{C}+\boldsymbol{D})]^{-1} \boldsymbol{\Gamma}$
$-\boldsymbol{C}+\boldsymbol{D}$: The deficit infinitesimal generator of the underlying Markov chain when no disasters occur
\Rightarrow It is nonsingular

Mean First Passage Time

- $\boldsymbol{f}(x):$ An $M \times 1$ vector whose i th element is given by
$-[\boldsymbol{f}(x)]_{i}=\mathrm{E}\left[\right.$ The first passage time $\left.\mid U_{0}=x, S_{0}=i\right]$
- $\boldsymbol{f}(x)=(-1) \cdot \lim _{s \rightarrow 0+} \frac{\partial}{\partial s}\left[\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x)+\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)\right] \boldsymbol{e}$
$-\boldsymbol{e}:$ An $M \times 1$ vector whose elements are all equal to one
- $f(x)$ is given in terms of Q_{N}

$$
\begin{equation*}
\boldsymbol{f}(x)=\left[\boldsymbol{I}-\exp \left(\boldsymbol{Q}_{\mathrm{N}} x\right)\right][-(\boldsymbol{C}+\boldsymbol{D})]^{-1} \boldsymbol{e} \tag{21}
\end{equation*}
$$

Mean First Passage Time

- $\boldsymbol{f}(x):$ An $M \times 1$ vector whose i th element is given by
- $[\boldsymbol{f}(x)]_{i}=\mathrm{E}\left[\right.$ The first passage time $\left.\mid U_{0}=x, S_{0}=i\right]$
- $\boldsymbol{f}(x)=(-1) \cdot \lim _{s \rightarrow 0+} \frac{\partial}{\partial s}\left[\boldsymbol{P}_{\mathrm{N}}^{*}(s \mid x)+\boldsymbol{P}_{\mathrm{D}}^{*}(s \mid x)\right] \boldsymbol{e}$
- $\boldsymbol{e}:$ An $M \times 1$ vector whose elements are all equal to one
- $\boldsymbol{f}(x)$ is given in terms of $\boldsymbol{Q}_{\mathrm{N}}$

$$
\begin{equation*}
\boldsymbol{f}(x)=\left[\boldsymbol{I}-\exp \left(\boldsymbol{Q}_{\mathrm{N}} x\right)\right][-(\boldsymbol{C}+\boldsymbol{D})]^{-1} \boldsymbol{e} \tag{21}
\end{equation*}
$$

Idle Probability

- к : The conditional steady state probability vector, given that the system is idle
- $[\boldsymbol{\kappa}]_{j}=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(S_{t}=j \mid U_{t}=0\right)$
- v : The steady state probability that the system is busy
$\bullet v=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(U_{t}>0\right)$
- κ and v are given in terms of Q_{N} and Q_{D}
- \mathfrak{k} is determined uniquely by

$$
\begin{equation*}
\boldsymbol{\kappa}\left(\boldsymbol{Q}_{\mathrm{N}}+\boldsymbol{Q}_{\mathrm{D}}\right)=\mathbf{0}, \quad \boldsymbol{\kappa} \boldsymbol{e}=1 \tag{17}
\end{equation*}
$$

- v is given by

$$
\begin{equation*}
v=1-\frac{1}{\boldsymbol{\kappa}\left(-\boldsymbol{Q}_{\mathrm{N}}\right)[-(\boldsymbol{C}+\boldsymbol{D})]^{-1} \boldsymbol{e}} \tag{32}
\end{equation*}
$$

Idle Probability

- к : The conditional steady state probability vector, given that the system is idle
- $[\boldsymbol{\kappa}]_{j}=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(S_{t}=j \mid U_{t}=0\right)$
- v : The steady state probability that the system is busy
- $v=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(U_{t}>0\right)$
- $\boldsymbol{\kappa}$ and v are given in terms of $\boldsymbol{Q}_{\mathrm{N}}$ and $\boldsymbol{Q}_{\mathrm{D}}$
- $\boldsymbol{\kappa}$ is determined uniquely by

$$
\begin{equation*}
\boldsymbol{\kappa}\left(\boldsymbol{Q}_{\mathrm{N}}+\boldsymbol{Q}_{\mathrm{D}}\right)=\mathbf{0}, \quad \boldsymbol{\kappa} \boldsymbol{e}=1 \tag{17}
\end{equation*}
$$

- v is given by

$$
\begin{equation*}
v=1-\frac{1}{\boldsymbol{\kappa}\left(-\boldsymbol{Q}_{\mathrm{N}}\right)[-(\boldsymbol{C}+\boldsymbol{D})]^{-1} \boldsymbol{e}} \tag{32}
\end{equation*}
$$

Two Different Representations of the LST of the Stationary Distribution of Work in System

Work in System

U_{t} : The amount of work in system at time t
S_{t} : The state of the underlying Markov chain at time t

- $\boldsymbol{u}_{t}(x): \mathrm{A} 1 \times M$ vector whose j th element is given by
- $\left[\boldsymbol{u}_{t}(x)\right]_{j}=\operatorname{Pr}\left(U_{t} \leq x, S_{t}=j\right)$
- We define $1 \times M$ vectors $u(x)$ and $u^{*}(s)$ as
- $\boldsymbol{u}(x)=\lim _{t \rightarrow \infty} \boldsymbol{u}_{t}(x)$
- $\boldsymbol{u}^{*}(s)=\int_{0}^{\infty} \exp (-s x) d \boldsymbol{u}(x)$
- We derive two different representations of $u^{*}(s)$

Work in System

U_{t} : The amount of work in system at time t
S_{t} : The state of the underlying Markov chain at time t

- $\boldsymbol{u}_{t}(x): \mathrm{A} 1 \times M$ vector whose j th element is given by
- $\left[\boldsymbol{u}_{t}(x)\right]_{j}=\operatorname{Pr}\left(U_{t} \leq x, S_{t}=j\right)$
- We define $1 \times M$ vectors $\boldsymbol{u}(x)$ and $\boldsymbol{u}^{*}(s)$ as
$\bullet \boldsymbol{u}(x)=\lim _{t \rightarrow \infty} \boldsymbol{u}_{t}(x)$
$\boldsymbol{u}^{*}(s)=\int_{0}^{\infty} \exp (-s x) d \boldsymbol{u}(x)$
- We derive two different representations of $\boldsymbol{u}^{*}(s)$

Transition from time t to $t+\Delta t$

- $\boldsymbol{u}_{t+\Delta t}(x)=\boldsymbol{u}_{t}(x+\Delta t) \boldsymbol{C} \Delta t+\int_{0}^{x} \boldsymbol{u}_{t}(x-y+\Delta t) d \boldsymbol{D}(y) \Delta t$

$$
+\boldsymbol{u}_{t}(\infty) \boldsymbol{\Gamma} \Delta t+\boldsymbol{o}(\Delta t)
$$

LST of the Workload Distribution $\boldsymbol{u}^{*}(s)$

- $\boldsymbol{u}_{t+\Delta t}(x)=\boldsymbol{u}_{t}(x+\Delta t) \boldsymbol{C} \Delta t+\int_{0}^{x} \boldsymbol{u}_{t}(x-y+\Delta t) d \boldsymbol{D}(y) \Delta t$ $+\boldsymbol{u}_{t}(\infty) \boldsymbol{\Gamma} \Delta t+\boldsymbol{o}(\Delta t)$
$\Rightarrow \frac{\partial}{\partial t}\left[\boldsymbol{u}_{t}(x)\right]=\frac{\partial}{\partial x}\left[\boldsymbol{u}_{t}(x)\right]+\boldsymbol{u}_{t}(x) \boldsymbol{C}+\int_{0}^{\infty} \boldsymbol{u}_{t}(x-y) d \boldsymbol{D}(y)+\boldsymbol{u}_{t}(\infty) \boldsymbol{\Gamma}$
- Take the limit $t \rightarrow \infty$

$$
0=\frac{d}{d x}[\boldsymbol{u}(x)]+\boldsymbol{u}(x) \boldsymbol{C}+\int_{0}^{\infty} \boldsymbol{u}(x-y) d \boldsymbol{D}(y)+\boldsymbol{\pi} \boldsymbol{\Gamma}
$$

- Take the LST with respect to x

$$
\begin{equation*}
\boldsymbol{u}^{*}(s)\left[s \boldsymbol{I}+\boldsymbol{C}+\boldsymbol{D}^{*}(s)\right]=s(1-v) \boldsymbol{\kappa}-\boldsymbol{\pi} \boldsymbol{\Gamma} \tag{33}
\end{equation*}
$$

Preemptive-Resume LIFO

- Assume that customers are served on
a preemptive-resume LIFO basis
- This service discipline is work conserving
- $\boldsymbol{u}^{*}(s, k)$: The LST of the workload distribution when k customers are present in the system
- $\boldsymbol{u}^{*}(s, 0)=(1-v) \boldsymbol{\kappa}$
- $\boldsymbol{u}^{*}(s)=\sum_{k=0}^{\infty} \boldsymbol{u}^{*}(s, k)$

Alternavite Representation of $\boldsymbol{u}^{*}(s)$

When there is k customers in the system

- Workload in system is equal to the sum of the remaining service requirements of
- $k-1$ waiting cusotmers
- the customer being served

Alternavite Representation of $\boldsymbol{u}^{*}(s)$

When there is k customers in the system

- Workload in system is equal to the sum of the remaining service requirements of
- $k-1$ waiting cusotmers
- the customer being served
- $\boldsymbol{u}^{*}(s, k)=\boldsymbol{u}^{*}(s, k-1) \boldsymbol{R}^{*}(s), \quad k=1,2, \ldots$
$\bullet \boldsymbol{R}^{*}(s)=\int_{0}^{\infty} \exp (-s x) d x \int_{x}^{\infty} d \boldsymbol{D}(y) \exp \left(\boldsymbol{Q}_{\mathrm{N}}(y-x)\right)$
- $\boldsymbol{u}^{*}(s)=\sum_{k=0}^{\infty} \boldsymbol{u}^{*}(s, k)=(1-v) \boldsymbol{\kappa}\left[\boldsymbol{I}-\boldsymbol{R}^{*}(s)\right]^{-1}$
- It is shown that $\boldsymbol{I}-\boldsymbol{R}^{*}(s)(\operatorname{Re}(s)>0)$ is nonsingular

Conclusion

- We considered the workload distribution in a MAP/G/1 queue with disasters
- We derived two different formulas

$$
\begin{align*}
& \boldsymbol{u}^{*}(s)\left[s \boldsymbol{I}+\boldsymbol{C}+\boldsymbol{D}^{*}(s)\right]=(1-v) \boldsymbol{\kappa}-\boldsymbol{\pi} \boldsymbol{\Gamma} \tag{33}\\
& \boldsymbol{u}^{*}(s)=(1-v) \boldsymbol{\kappa}\left[\boldsymbol{I}-\boldsymbol{R}^{*}(s)\right]^{-1} \tag{45}
\end{align*}
$$

- We showed that these formulas are equivalent in a sense that one can be derived from another
- We have already finished an additional analysis
on the queue length, the waiting time, and the sojourn time in a FIFO MAP/G/1 queue with disasters
- We are going to submit a paper with these results to JIMO

