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● The state of an information source is monitored over time

Log DB Processor

Monitor

Sensors

● Abstraction of various situations
where the freshness of data is of interest

◆ Satellite imagery, tracking trends in SNS, and so on
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Time stamp
t −AoI(t )

Current time t

AoI , Current time − Time-stamp of the displayed information

● This system is usually modeled as queueing systems

◆ Information packets are regarded as
customers arriving to a queueing system

➨ The AoI is formulated as a continuous-time stochastic process
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● Imposing deadlines to packets reduces the AoI [1,2]

◆ Waiting packet is dropped when its deadline expires

● In [1,2], explicit formulas for the mean AoI is derived for

◆ M/M/1/2+M queue
■ Exponential services & Exponential deadlines
■ Easier to analyze because of the memoryless property

◆ M/M/1/2+D queue
■ Exponential services & Constant deadlines
■ More difficult to analyze

[1] Kam et al., in Proc. of IEEE ISIT 2016 (2016).
[2] Kam el al., IEEE Trans. Inf. Theory (2018).



AoI with Packet Deadline (2)
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● In the M/M/1/2+D queue, there is only one buffer space

➨ It is sufficient to consider
the remaining time to deadline for at most one packet

➨ The number of packets in the system is formulated as
a semi-Markov process with three-states [1,2]
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● It is not straightforward to extend this approach to
systems with buffer capacity larger than one

➨ It is necessary to keep track of the deadlines
of all waiting packets



Outline of This Talk
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We consider the AoI with packet deadlines

● We analyze the probability distribution of the AoI,
assuming Infinite buffer capacity

● We first analyze a general case (M/G/1+G queue), where

◆ Service times follows a general non-negative distribution
◆ Deadlines follows a general non-negative distribution

● Specializing the result, we obtain explicit formulas for

◆ The density function a(x) of the AoI in the M/M/1+G
(Exponential services)

◆ The mean AoI E[A] in the M/M/1+D
(Expopential services & Constant deadlines)



AoI in the M/G/1+G Queue
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Model
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● Packets arrive according to a Poisson process

◆ λ: Arrival rate of packets

● Service times of packets are i.i.d. with finite mean E[H ]

◆ H(x): CDF of service times

● Deadlines of packets are i.i.d.

◆ G(x): CDF of deadlines

● For simplicity, we assume H(0) =G(0) = 0



Informative and Non-Informative Packets
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There are two types of packets in this model

● Informative packets

◆ Packets which are eventually processed

● Non-informative packets

◆ Packets which are lost due to deadline expiration



Application of a General Formula
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A(x): Stationary AoI distribution
(Long-run fraction of time that the AoI ≤ x)

● a∗(s): The Laplace-Stieltjes transform (LST) of A(x)

a∗(s) =
∫∞

0
e−sxdA(x), Re(s) > 0

● The following relation holds under a fairly general setting [3,4]

a∗(s) = λ† ·
d∗(s)−a∗

peak
(s)

s

λ†: Mean number of information updates per time unit
d∗(s): LST of the system delay distribution of informative packets
a∗

peak
(s): LST of the peak AoI distribution

[3] Inoue et al., in Proc of IEEE ISIT 2017 (2017).
[4] Inoue et al., arXiv preprint (2018).



Approach of the Analysis
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In the M/G/1+G queue, we have

a∗(s) = λ(1−Ploss) ·
d∗(s)−a∗

peak
(s)

s

Ploss: Loss probability of packets

● a∗(s) is obtained from the following facts:

(i) The LST a∗
peak

(s) of the peak AoI is
given in terms of the system delay distribution D(x)

■ D(x) := Pr(System delay≤ x), d∗(s) =
∫∞

0
e−sxdD(x)

(ii) D(x) and Ploss are given by classical results [5]
in the queueing theory

[5] Kovalenko, Theory Probab. Appl. (1961).
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Peak AoI in M/G/1+G (1)
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Peak AoI = System Delay + Time to Next Update

● We need to consider two exclusive cases

Case 1: There are no packets in the system just after an update
Case 2: There are some packets in the system just after an update

With this observation, we can show that (h∗(s): LST of H(x))

a∗
peak(s) = qd∗

0 (s) ·
λ

s +λ
·h∗(s)+ (1−q)d∗

+(s) ·h∗(s)

q: Probability that Case 1 occurs
d∗

0 (s): LST of the system delay in Case 1
d∗
+(s): LST of the system delay in Case 2



Peak AoI in M/G/1+G (2)
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a∗
peak(s) = qd∗

0 (s) ·
λ

s +λ
·h∗(s)+ (1−q)d∗

+(s) ·h∗(s)

● qd∗
0 (s) and (1−q)d∗

+(s) are obtained as

qd∗
0 (s) =

∫∞

0
e−sxe−λJ (x)dD(x), (1−q)d∗

+(s) = d∗(s)−qd∗
0 (s),

where

J (x) =
∫x

0
G(y)dy (G(x): CCDF of the deadline distribution)

➨ a∗
peak

(s) is given in terms of the system delay distribution D(x)
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Workload process
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Workload: Sum of remaining service times of packets
which will not be lost (i.e., their deadlines will not expire)

Let Vt denote the workload at time t

● Vt decreases in time linearly with slope 1

● An upward jump in Vt occurs when

◆ A packet arrives to the system, and
◆ The arriving packet has

a deadline larger than Vt just before the arrival instant

W
or

kl
oa

d

Time



Workload Distribution
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π0: Probability that the system is empty
v(x): Probability density function of the workload in system

● The following balance equation holds [5]

v(x) =λπ0H(x)+λ

∫x

0
v(y)G(y)H(x − y)dy, x ≥ 0

H(x), G(x): CCDFs of service times and deadlines

This is a Volterra integral equation of the second kind

➨ v(x) and π0 are given by solving this integral equation

● In addition, the loss probability Ploss is given by

Ploss =
∫∞

0
v(x)G(x)dx = 1−

1−π0

ρ
ρ =λE[H ]



System Delay in M/G/1+G
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System Delay = Waiting Time + Service Time

Waiting time = Workload seen by an arriving packet,
conditioned that the packet will not be lost

● W (0): Probability that the waiting time equals to zero
● w(x): Probability density function of the waiting time

W (0) =
π0

1−Ploss

, w(x) =
v(x)G(x)

1−Ploss

The CDF D(x) of the system delay is thus given by

D(x) =
π0H(x)

1−Ploss

+
1

1−Ploss

∫x

0
H(x − y)v(y)G(y)dy



AoI in M/G/1+G
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● Finally, substituting the above results into

a∗(s) = λ(1−Ploss) ·
d∗(s)−a∗

peak
(s)

s
,

we can obtain the LST of the AoI distribution

a∗(s) =π0d∗
0 (s) ·

λ

s +λ
·h∗(s)+ (1−π0)d∗(s) ·

1−h∗(s)

sE[H ]

● d∗
0 (s) and d∗(s) are given in terms of

◆ π0: Probability that the system is empty
◆ v(x): Probability density function of the workload

(π0 and v(x) are given by solving the Volterra integral equation)



Special Cases: M/M/1+G and M/M/1+D
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Special Case: M/M/1+G (1)
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a∗(s) =π0d∗
0 (s) ·

λ

s +λ
·h∗(s)+ (1−π0)d∗(s) ·

1−h∗(s)

sE[H ]

(d∗
0 (s) and d∗(s) are given in terms of π0 and v(x))

● Service times follow an exponential distribution

H(x) = 1−e−µx , x ≥ 0

In this case, we have

π0 =
[

1+
∫∞

0
λe−µx+λJ (x)dx

]−1

, v(x) =π0λe−µx+λJ (x)

(

J (x) =
∫x

0
G(y)dy, G(y): CCDF of deadlines

)



Special Case: M/M/1+G (2)
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a(x): Probability density function of the AoI distribution
h(x) (= µe−µx): Probability density function of service times

● In the M/M/1+G queue, we have

a(x) =φ∗h(x) (* denotes the convolution)

➨ The AoI is the sum of two independent random variables

φ(x) is a probability density function given by

φ(x) =















π0µλ(e−λx −e−µx)

µ−λ
+π0λe−µx+λJ (x), λ 6=µ,

π0µe−µx
(

µx +eµJ (x)
)

, λ=µ



Special Case: M/M/1+D (1)
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● We further assume that deadlines take a constant value τ

● In this case, J (x) is simplified as

J (x) :=
∫x

0
G(x)dx = min(x,τ)

➨ We have an explicit formula for the mean AoI

E[A] =























τ+
3−2ρ

µ(1−ρ)
+

1/ρ−ρ−µτ−2

µ(1−ρ2e−µ(1−ρ)τ)
, λ 6=µ,

2

µ
+

1

2µ
·

2+ (µτ)2

2+µτ
, λ=µ



Special Case: M/M/1+D (2)
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Deadlines take a constant value τ

E[A] =























τ+
3−2ρ

µ(1−ρ)
+

1/ρ−ρ−µτ−2

µ(1−ρ2e−µ(1−ρ)τ)
, λ 6=µ,

2

µ
+

1

2µ
·

2+ (µτ)2

2+µτ
, λ=µ

● We can verify that

lim
τ→0+

E[A] =
2

µ
+

1

ρµ(1+ρ)
M/M/1/1 queue [6]

lim
τ→∞

E[A] =
1

µ

(

1+
1

ρ
+

ρ2

1−ρ

)

M/M/1 queue [7]

[6] Costa et al. IEEE Trans. Inf. Theory (2016).
[7] Kaul et al. in Proc. of IEEE INFOCOM 2012 (2012).



Special Case: M/M/1+D (2)
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Deadlines take a constant value τ

E[A] =























τ+
3−2ρ

µ(1−ρ)
+

1/ρ−ρ−µτ−2

µ(1−ρ2e−µ(1−ρ)τ)
, λ 6=µ,

2

µ
+

1

2µ
·

2+ (µτ)2

2+µτ
, λ=µ

● When λ=µ holds, E[A] is a convex function of τ

➨ E[A] achieves the minimum at τ= τ∗

τ∗ =
p

6−2

µ

The minimum value of E[A] at τ= τ∗ is given by

E[A] =
p

6

µ



Conclusion
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● We considered the AoI with packet deadline,
assuming infinite buffer capacity

● We first analyzed the AoI in the M/G/1+G queue

◆ The AoI distribution is given in terms of
the solution of a Volterra integral equation

● We then considered two special cases

◆ For the M/M/1+G queue, we obtained
Simpler formula for the density function a(x) of the AoI

◆ For the M/M/1+D queue, we obtained
Simpler formula for the mean AoI E[A]
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