# 既存データからみる看護管理 一病院内の「待ち」をみる—

井上 文彰

大阪大学大学院工学研究科 電気電子情報工学専攻

### 病院内に蓄積された 「既存データ」の活用

- 院内システムの電子化
  - ◆ 日々, 大量のデータが 自動的に蓄積され続ける
- データ利活用への期待
  - ◆ 院内業務の実態把握
  - ◆ 意思決定に際する 客観的根拠付け
- ◆ 本講演では、具体例を通じて 蓄積データの活用法を提示

- 「待ち」は患者不満の代表格
  - ◆ 3 時間待ちの 3 分診療?
  - ◆ 診察後も会計待ち
- 待ち行列理論
  - ◆「待ち」の数学的理論
  - ◆ 100 年以上の歴史があり 現在も研究が続いている
- 本講演では、理論の初歩と データ分析への応用を解説

### 病院内に蓄積された 「既存データ」の活用

- 院内システムの電子化
  - ◆ 日々, 大量のデータが 自動的に蓄積され続ける
- データ利活用への期待
  - ◆ 院内業務の実態把握
  - ◆ 意思決定に際する 客観的根拠付け
- ◆ 本講演では、具体例を通じて 蓄積データの活用法を提示

- 「待ち」は患者不満の代表格
  - ◆ 3 時間待ちの 3 分診療?
  - ◆ 診察後も会計待ち
- 待ち行列理論
  - ◆「待ち」の数学的理論
  - ◆ 100 年以上の歴史があり 現在も研究が続いている
- 本講演では、理論の初歩と データ分析への応用を解説

病院内に蓄積された 「既存データ」の活用

- 院内システムの電子化
  - ◆ 日々, 大量のデータが 自動的に蓄積され続ける
- データ利活用への期待
  - ◆ 院内業務の実態把握
  - ◆ 意思決定に際する 客観的根拠付け
- 本講演では、具体例を通じて 蓄積データの活用法を提示

- 「待ち」は患者不満の代表格
  - ◆ 3 時間待ちの3分診療?
  - ◆ 診察後も会計待ち
- 待ち行列理論
  - ◆ 「待ち」の数学的理論
  - ◆ 100 年以上の歴史があり 現在も研究が続いている
- ◆本講演では、理論の初歩と データ分析への応用を解説

### 病院内に蓄積された 「既存データ」の活用

- 院内システムの電子化
  - ◆ 日々, 大量のデータが 自動的に蓄積され続ける
- データ利活用への期待
  - ◆ 院内業務の実態把握
  - ◆ 意思決定に際する 客観的根拠付け
- ◆ 本講演では、具体例を通じて 蓄積データの活用法を提示

- 「待ち」は患者不満の代表格
  - ◆ 3 時間待ちの3分診療?
  - ◆ 診察後も会計待ち
- 待ち行列理論
  - ◆ 「待ち」の数学的理論
  - ◆ 100 年以上の歴史があり 現在も研究が続いている
- ◆本講演では、理論の初歩と データ分析への応用を解説

### 分析対象の病院の概要

- 1日に 1,000 人を超える外来患者が来院する大規模総合病院
- 会計システムおよび自動精算機 (5台) を導入済

典型的な患者の受診フロー:

- (i) 来院時に, 診察券を診察受付機に通す
- (ii) 各診療科で診察を受ける
- (iii) 診察を終えると,会計計算受付機に診察券を通す
  - → 保険証の確認等が必要な場合, 有人窓口へ案内
- (iv) 会計計算完了の通知を受けると, 自動精算機で料金を支払う



### 分析対象の病院の概要

- 1日に 1,000 人を超える外来患者が来院する大規模総合病院
- 会計システムおよび自動精算機 (5台) を導入済

典型的な患者の受診フロー:

- (i) 来院時に、診察券を診察受付機に通す
- (ii) 各診療科で診察を受ける
- (iii) 診察を終えると,会計計算受付機に診察券を通す
  - ➡ 保険証の確認等が必要な場合。有人窓口へ案内
- (iv) 会計計算完了の通知を受けると、自動精算機で料金を支払う



### 分析対象の病院の概要

- 1日に 1,000 人を超える外来患者が来院する大規模総合病院
- 会計システムおよび自動精算機 (5台) を導入済

典型的な患者の受診フロー:

- (i) 来院時に、診察券を診察受付機に通す
- (ii) 各診療科で診察を受ける
- (iii) 診察を終えると,会計計算受付機に診察券を通す
  - ➡ 保険証の確認等が必要な場合。有人窓口へ案内
- (iv) 会計計算完了の通知を受けると、自動精算機で料金を支払う



### 会計ログデータ

● 当該病院では、会計受付システムのログデータを蓄積

```
患者レコードの例:
                  受付:2
     09:09:19
           09:11:16
  16
                  会計情報発生。(0円以外)
     精算機案内表示開始。(来院番号:183)
     会計精算(入金)
     09:12:07 09:12:04
                  受付:2
     09:09:33
           09:11:32
  17
                  会計情報発生。(0円以外)
     09:11:42 09:11:24
                  精算機案内表示開始。(来院番号:104)
     09:11:42 09:11:42
                  会計精算(入金)
     09:12:57 09:12:45
```

- 今回は2015年・2016年のデータ (485日) の提供を受けた
  - ◆ 延べ患者数は 764,283

### 会計ログデータ

● 当該病院では、会計受付システムのログデータを蓄積

```
患者レコードの例:
                  受付:2
     09:09:19 09:11:16
  16
                  会計情報発生。(0円以外)
     精算機案内表示開始。(来院番号:183)
     09:11:17 09:11:17
                  会計精算(入金)
     09:12:07 09:12:04
                  受付:2
     09:09:33 09:11:32
  17
                  会計情報発生。(0円以外)
     精算機案内表示開始。(来院番号:104)
     09:11:42 09:11:42
                  会計精算(入金)
     09:12:57 09:12:45
```

- 今回は 2015 年・2016 年のデータ (485 日) の提供を受けた
  - ◆ 延べ患者数は 764,283

# データの前処理 (1)

- ログデータをもとに、患者を以下の5種類に分類
  - (a) 診療料金が 0 円ではない患者
    - (a-1) 当日中に精算機で支払いを行った患者 (85.0%)
    - (a-2) 当日中に精算機で支払いを行っていない患者 (1.1%)
  - (b) 診療料金が 0 円の患者
    - (b-1) 当日中に精算機で支払いを行った患者 (7.3%)
    - (b-2) 当日中に精算機で支払いを行っていない患者 (4.9%)
  - (c) 会計時刻データに欠損のある患者 (1.7%)
- 以下の分析では, (a-1) と (b-1) の患者のみを扱う
  - ◆ 便宜上、分析対象患者数を有効受付数と呼ぶ

# データの前処理 (1)

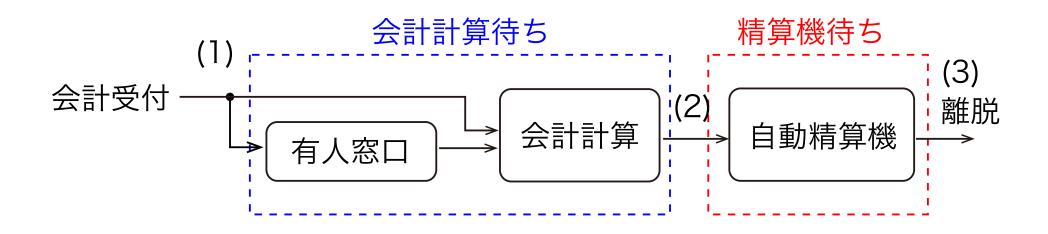
- ログデータをもとに、患者を以下の5種類に分類
  - (a) 診療料金が 0 円ではない患者
    - (a-1) 当日中に精算機で支払いを行った患者 (85.0%)
    - (a-2) 当日中に精算機で支払いを行っていない患者 (1.1%)
  - (b) 診療料金が 0 円の患者
    - (b-1) 当日中に精算機で支払いを行った患者 (7.3%)
    - (b-2) 当日中に精算機で支払いを行っていない患者 (4.9%)
  - (c) 会計時刻データに欠損のある患者 (1.7%)
- 以下の分析では, (a-1) と (b-1) の患者のみを扱う
  - ◆ 便宜上. 分析対象患者数を有効受付数と呼ぶ

# データの前処理 (2)

- 各患者のレコードから、3種類の時刻を取得
  - (1) 会計受付時刻, (2) 会計計算完了時刻, (3) 支払い完了時刻

これらを集計することで、各時刻における待ち人数が計算可能

- ◆ 会計計算待ち人数: (1) を終えて, (2) が未完了の総人数
- ◆ 精算機待ち人数: (2) を終えて, (3) が未完了の総人数

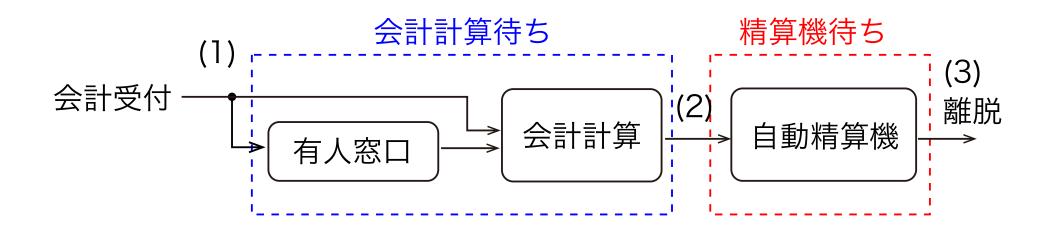


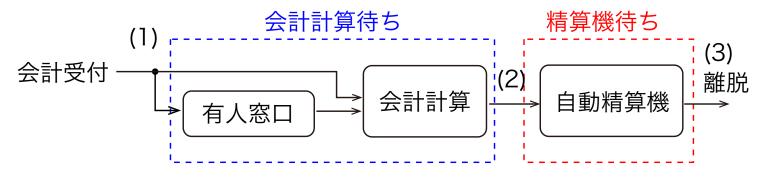
# データの前処理 (2)

- 各患者のレコードから、3種類の時刻を取得
  - (1) 会計受付時刻, (2) 会計計算完了時刻, (3) 支払い完了時刻

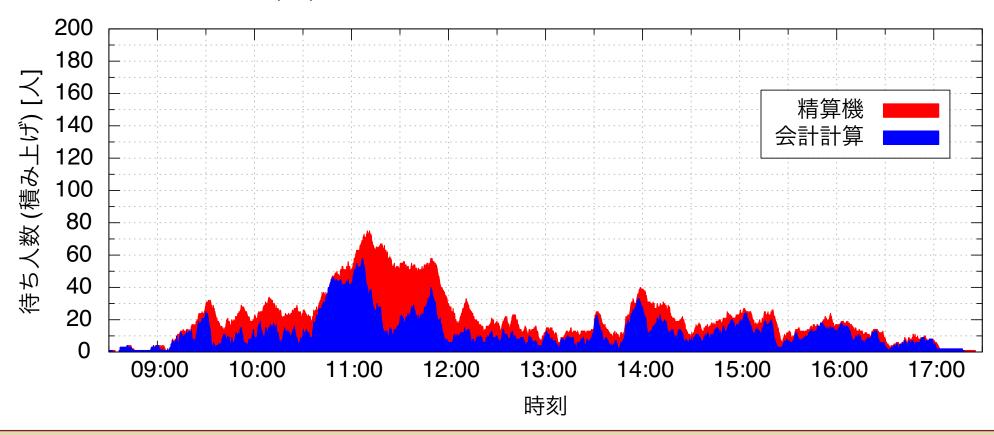
これらを集計することで、各時刻における待ち人数が計算可能

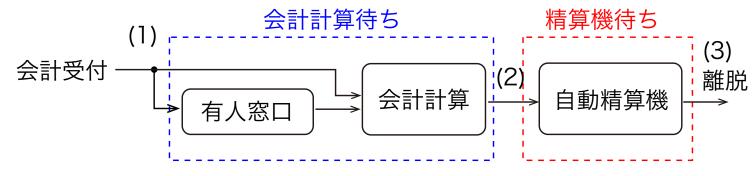
- ◆ 会計計算待ち人数: (1) を終えて、(2) が未完了の総人数
- ◆ 精算機待ち人数: (2) を終えて, (3) が未完了の総人数



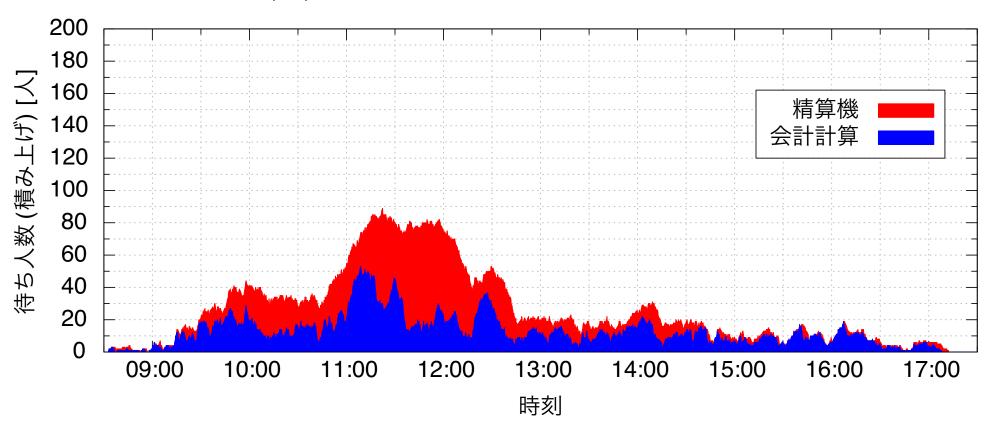


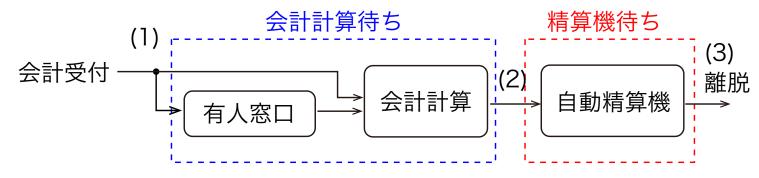
#### 2015年06月01日(月)



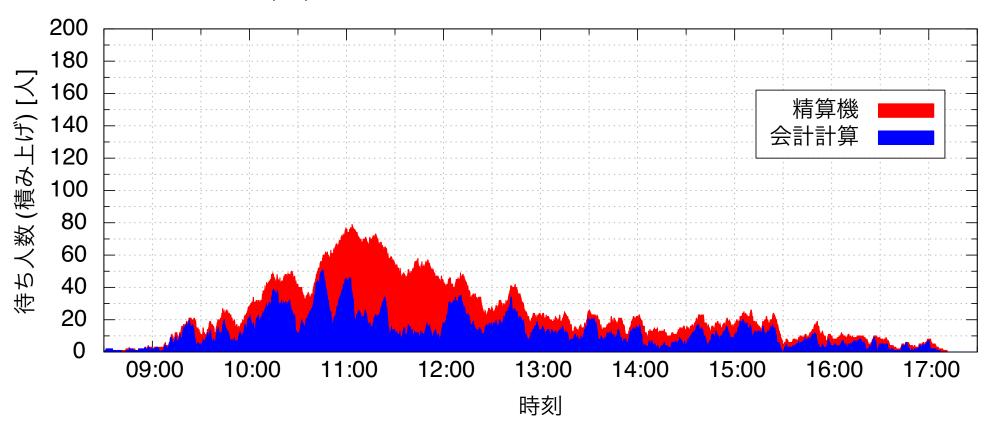


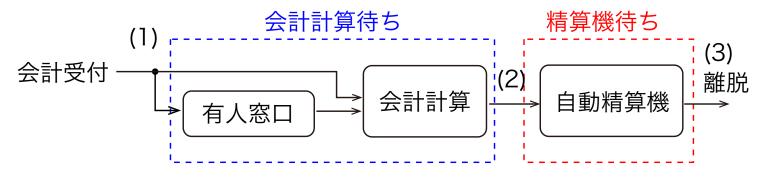
#### 2015年06月02日(火)



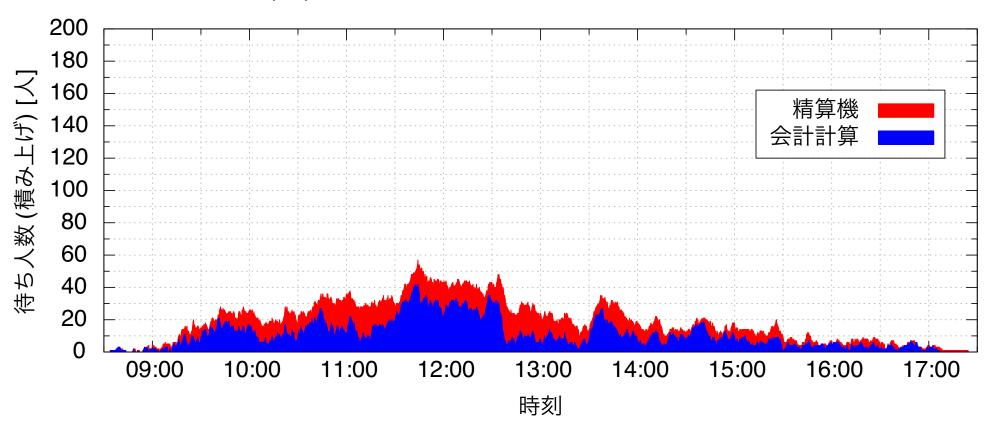


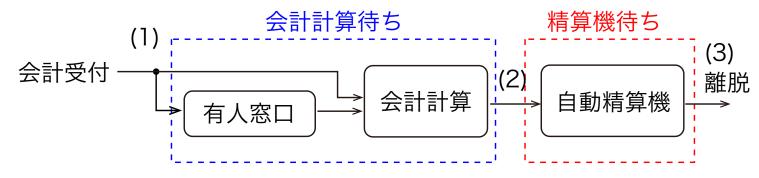
#### 2015年06月03日(水)



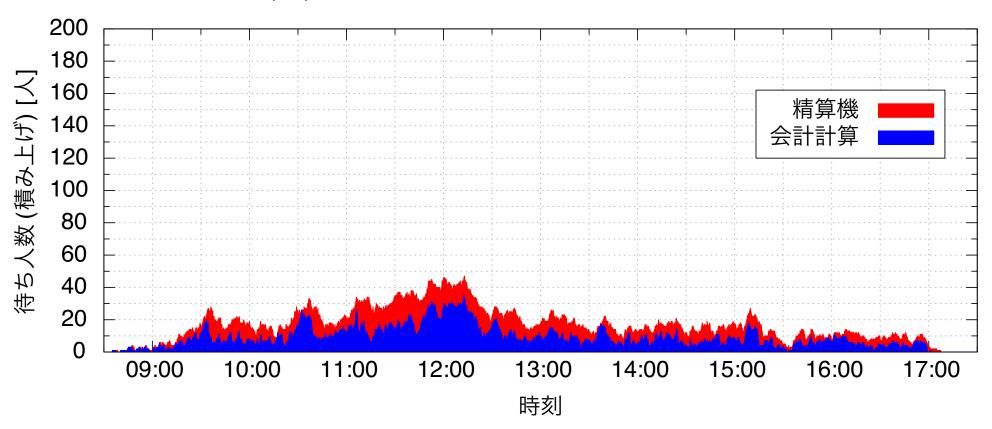


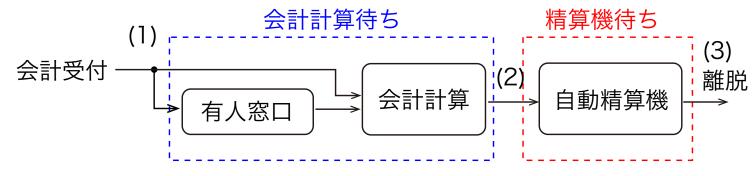
#### 2015年06月04日(木)



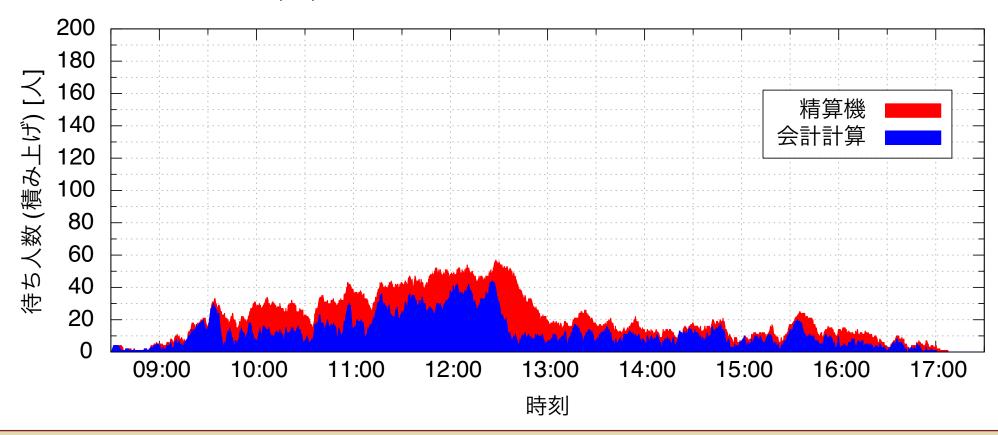


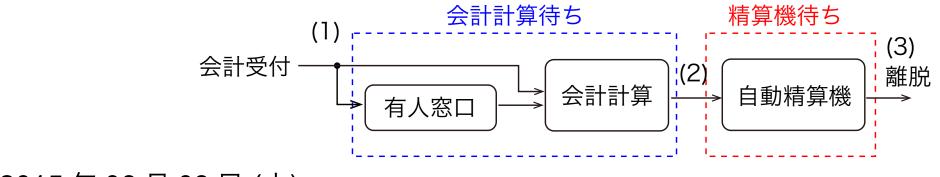
#### 2015年06月05日(金)



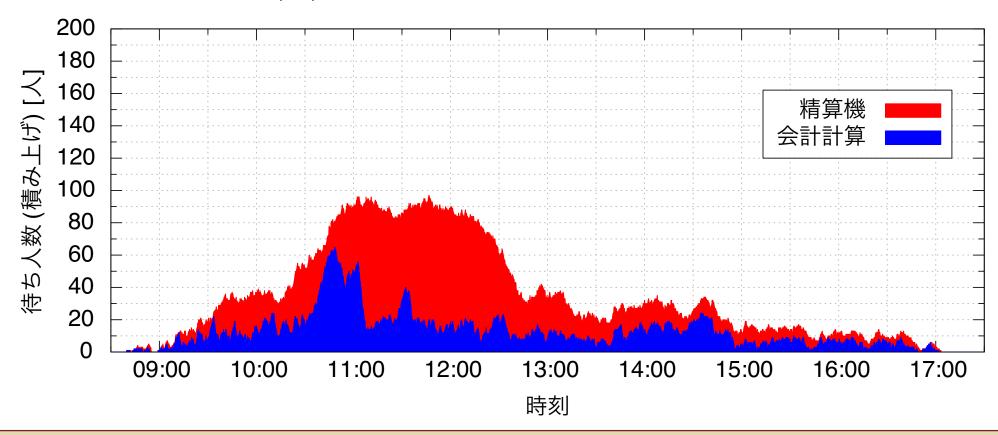


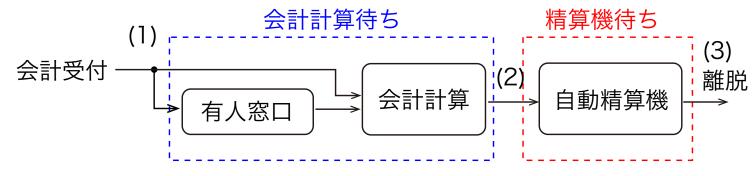
2015年06月08日(月)



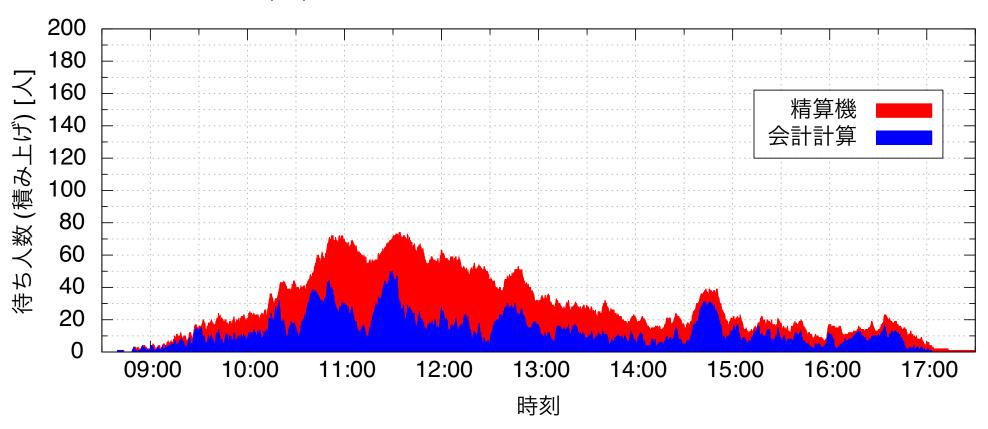


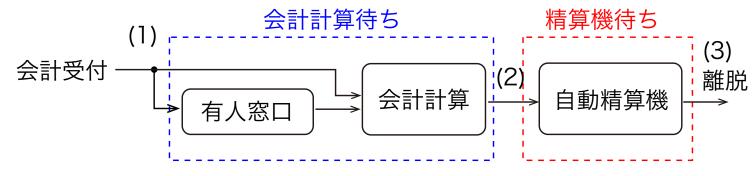
2015年06月09日(火)



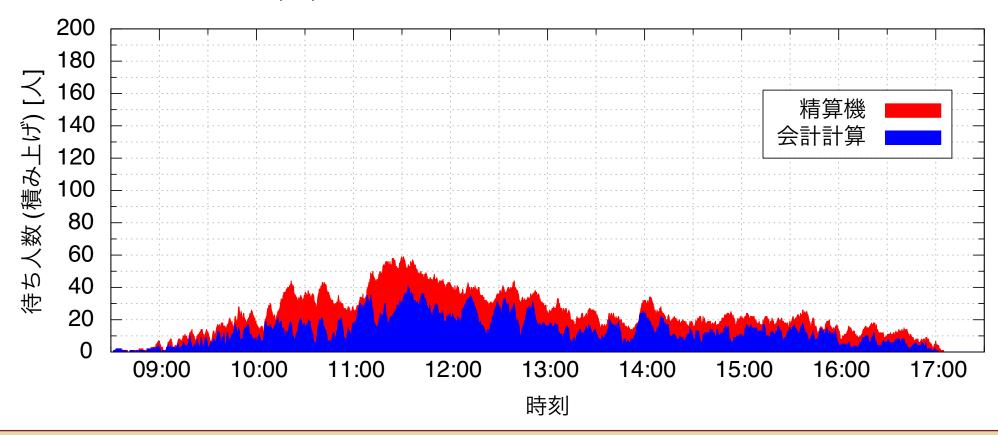


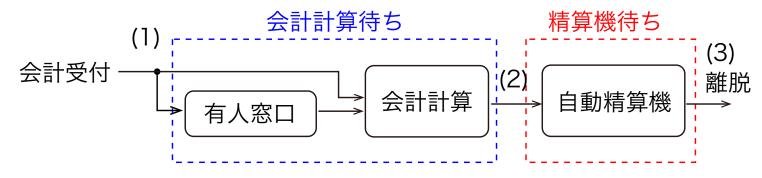
#### 2015年06月10日(水)



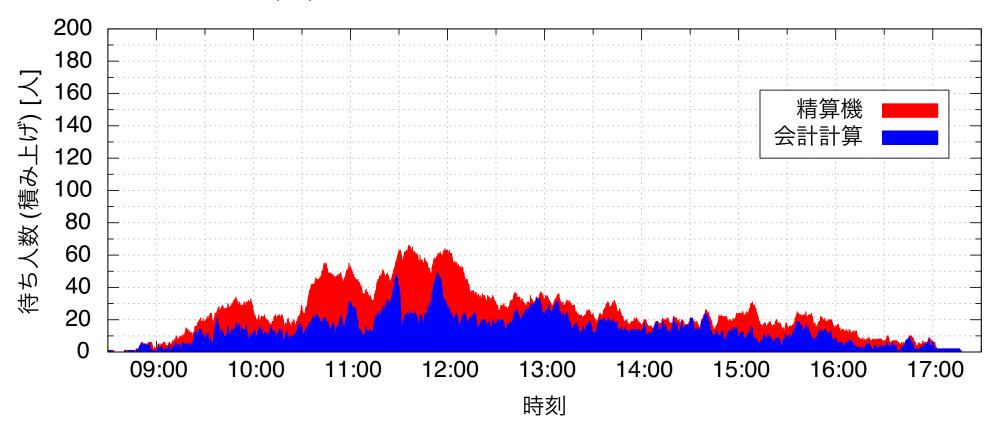


#### 2015年06月11日(木)





#### 2015年06月12日(金)



### 待ち人数の可視化から分かること

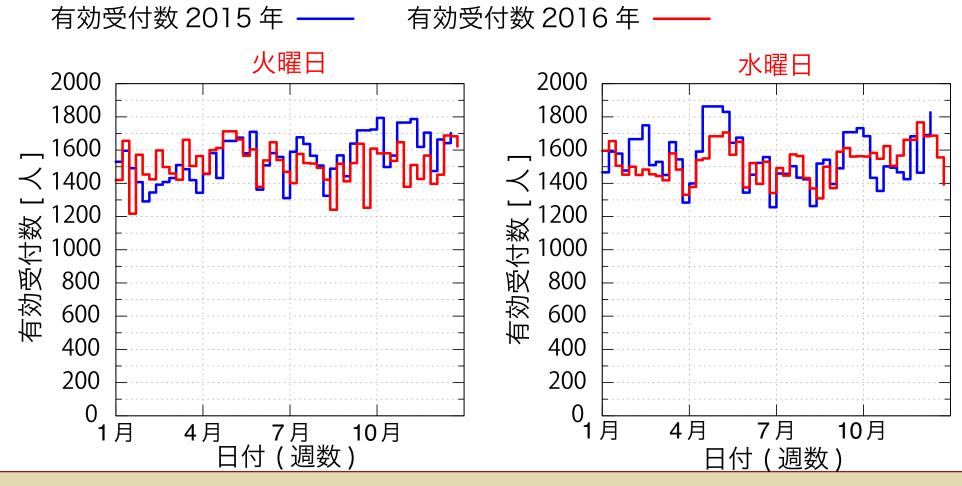
- 各時刻での待ち人数は、日によって大きく異なる
- ただし、曜日ごとには何らかの傾向が伺える (ように思える)
  - ◆ 火曜日は混みやすい (?)
- いずれにせよ, 2週間分程度のデータだけから 何かを主張するのは難しい
- 待ち人数の分析には長期間のデータが必要不可欠

### 待ち人数の可視化から分かること

- 各時刻での待ち人数は、日によって大きく異なる
- ただし、曜日ごとには何らかの傾向が伺える (ように思える)
  - ◆ 火曜日は混みやすい (?)
- いずれにせよ,2週間分程度のデータだけから何かを主張するのは難しい
- 待ち人数の分析には長期間のデータが必要不可欠
  - → 2年間に渡る蓄積データが活用できる!

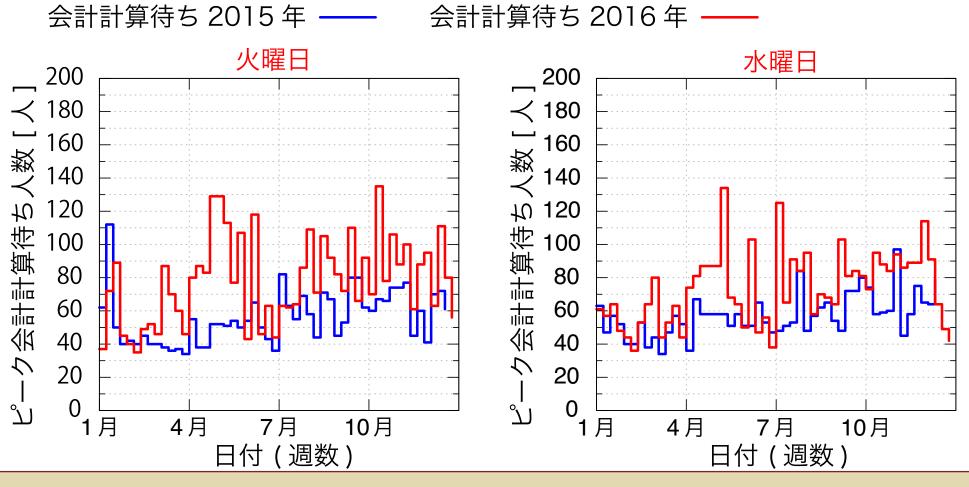
# 有効受付数 (分析対象の来院患者数)

|          | 月曜日  | 火曜日  | 水曜日  | 木曜日  | 金曜日  |
|----------|------|------|------|------|------|
| 2015 年平均 | 1413 | 1545 | 1534 | 1422 | 1355 |
| 2016 年平均 | 1420 | 1518 | 1522 | 1490 | 1334 |



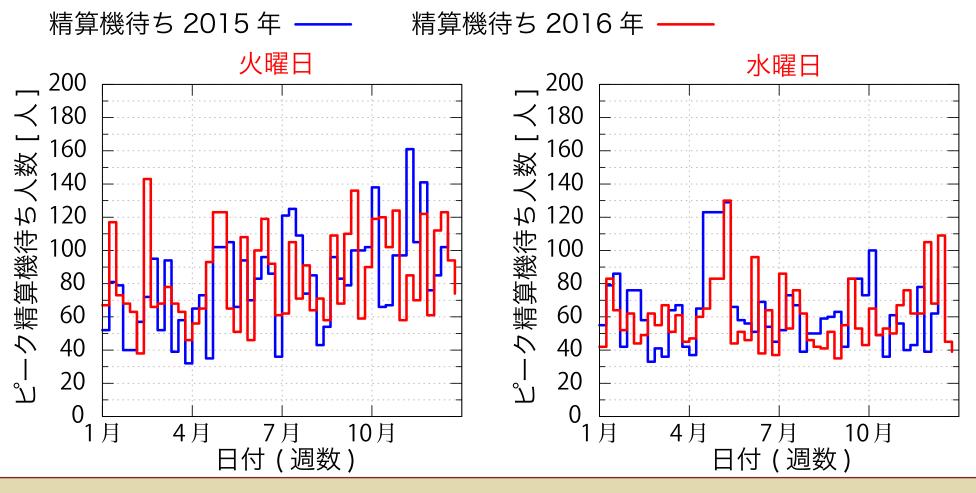
### 会計計算ピーク待ち人数

|          | 月曜日 | 火曜日 | 水曜日 | 木曜日 | 金曜日 |
|----------|-----|-----|-----|-----|-----|
| 2015 年平均 | 46  | 55  | 57  | 46  | 45  |
| 2016 年平均 | 62  | 77  | 73  | 63  | 61  |



### 精算機ピーク待ち人数

|          | 月曜日 | 火曜日 | 水曜日 | 木曜日 | 金曜日 |
|----------|-----|-----|-----|-----|-----|
| 2015 年平均 | 46  | 82  | 61  | 42  | 43  |
| 2016 年平均 | 51  | 84  | 60  | 47  | 43  |



### ここまでのまとめ (1)

● 有効受付数 (分析対象の来院患者数)

|          | 月曜日  | 火曜日  | 水曜日  | 木曜日  | 金曜日  |
|----------|------|------|------|------|------|
| 2015 年平均 | 1413 | 1545 | 1534 | 1422 | 1355 |
| 2016 年平均 | 1420 | 1518 | 1522 | 1490 | 1334 |

#### ● 会計計算待ち

|          | 月曜日 | 火曜日 | 水曜日 | 木曜日 | 金曜日 |
|----------|-----|-----|-----|-----|-----|
| 2015 年平均 | 46  | 55  | 57  | 46  | 45  |
| 2016 年平均 | 62  | 77  | 73  | 63  | 61  |

#### ● 精算機待ち

|          | 月曜日 | 火曜日 | 水曜日 | 木曜日 | 金曜日 |
|----------|-----|-----|-----|-----|-----|
| 2015 年平均 | 46  | 82  | 61  | 42  | 43  |
| 2016 年平均 | 51  | 84  | 60  | 47  | 43  |

火曜日と水曜日では、有効受付数は同程度 精算機での「待ち」が火曜日に大きくなるのはなぜだろうか?

# ここまでのまとめ(2)

- また、上記のような分析でわかるのは「傾向」のみ
  - ◆ 火曜日に混みやすい
  - ◆ 主に午前中が混雑のピーク など

このような方向性の分析だけでは「現場の改善」に つながる知見はなかなか出てこない

→ 待ちが起こる「仕組み」をもっと詳しく考える必要がある

以下では、待ち行列理論の初歩を解説する

◆ 最後に、それを踏まえて今回のデータを再訪する

# ここまでのまとめ(2)

- また、上記のような分析でわかるのは「傾向」のみ
  - ◆ 火曜日に混みやすい
  - ◆ 主に午前中が混雑のピーク など

このような方向性の分析だけでは「現場の改善」に つながる知見はなかなか出てこない

▶ 待ちが起こる「仕組み」をもっと詳しく考える必要がある

以下では、待ち行列理論の初歩を解説する

◆ 最後に、それを踏まえて今回のデータを再訪する

# 「待ち行列理論」入門

# 「待ち行列」の模式化 (1)

- 例 1) コンビニのレジ
  - ◆ 順番を待つ方法 列を作って並ぶ
  - ◆ サービスを提供 ― レジ打ちの店員



- 例 2) 病院外来の待合室
  - ◆ 順番を待つ方法 呼ばれるまで待機
  - ◆ サービスを提供 医療従事者
- 例 3) トイレの前
  - ◆ 順番を待つ方法 列を作って並ぶ
  - ◆ サービスを提供 ― トイレ





# 「待ち行列」の模式化 (2)

- 待ち行列モデル:客、待ち行列、サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し、待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - サービスを受け終えると、離脱する

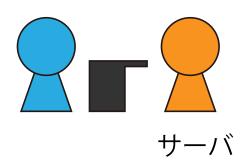


#### 待ち行列

- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ、トイレの前、病院外来の待合室

# 「待ち行列」の模式化 (2)

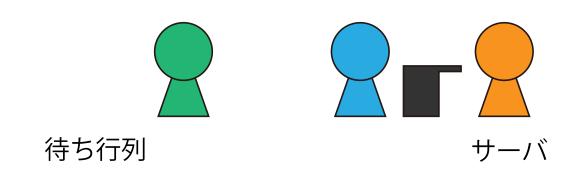
- 待ち行列モデル:客,待ち行列,サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し、待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - サービスを受け終えると、離脱する



#### 待ち行列

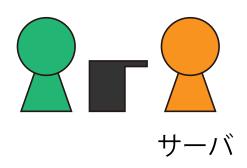
- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ、トイレの前、病院外来の待合室

- 待ち行列モデル:客,待ち行列,サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し、待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - サービスを受け終えると、離脱する



- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ、トイレの前、病院外来の待合室

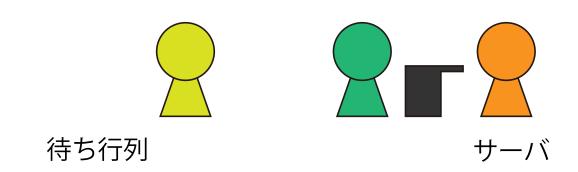
- 待ち行列モデル:客,待ち行列,サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し、待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - サービスを受け終えると、離脱する



#### 待ち行列

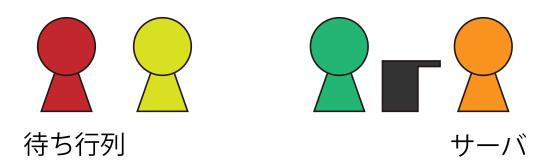
- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ、トイレの前、病院外来の待合室

- 待ち行列モデル:客,待ち行列,サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し、待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - サービスを受け終えると、離脱する



- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ,トイレの前,病院外来の待合室

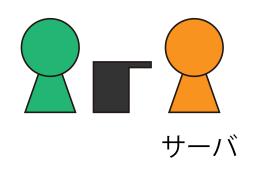
- 待ち行列モデル:客,待ち行列,サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し、待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - サービスを受け終えると、離脱する



- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ、トイレの前、病院外来の待合室

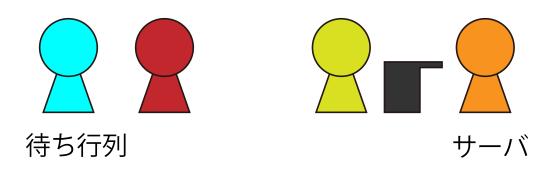
- 待ち行列モデル:客,待ち行列,サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し、待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - ■サービスを受け終えると、離脱する





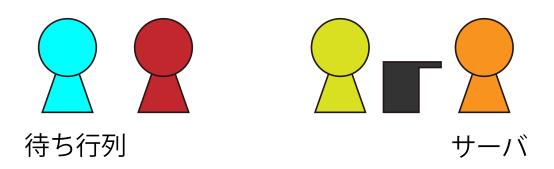
- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ、トイレの前、病院外来の待合室

- 待ち行列モデル:客,待ち行列,サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し、待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - サービスを受け終えると、離脱する



- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ、トイレの前、病院外来の待合室

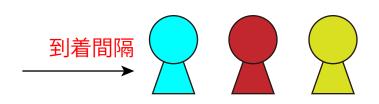
- 待ち行列モデル:客,待ち行列,サーバからなる「模型」
  - ◆ それぞれの客の動き
    - 到着し,待ち行列で順番を待つ
    - 自分の番が来たら、サーバからサービスを受ける
    - サービスを受け終えると、離脱する

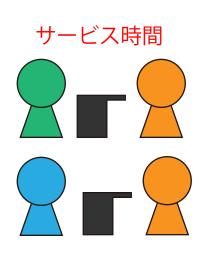


- 待ち行列モデルにより、幅広い状況を「ひとまとめ」に表現可能
  - ◆ コンビニのレジ、トイレの前、病院外来の待合室

#### 待ち行列モデル

- 待ち行列モデルの動きを決める三つの基本要素
  - 1. 客の到着間隔
    - 到着間隔が短いと、混みやすい
  - 2. サービス時間 (一人の客のサービスに要する時間)
    - ■サービス時間が長いと、混みやすい
  - 3. サーバ数
    - サーバ数が少ないと、混みやすい





サーバが一つだけの場合

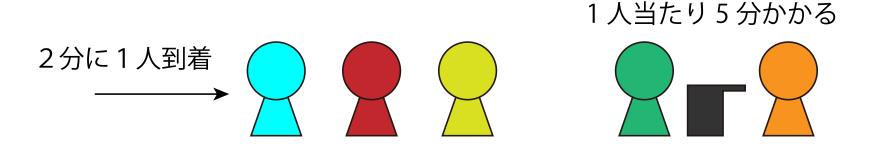
はじめに、サーバが一つだけの場合を考える

● 「待ち」が発生する原因

- 「待ち」が発生する原因
  - 1. 過負荷: 到着間隔が、サービス時間より短い
    - ➡ 時間が経つにつれて、「待ち」は限りなく増えていく
  - 2. ランダムネス: 到着間隔とサービス時間の「ばらつき」
    - 到着間隔の平均がサービス時間の平均より長くても、 大きな「ばらつき」が、大きな「待ち」を引き起こす

例) 到着間隔 2分, サービス時間 5分

待ち人数は1分当たり何人増える?

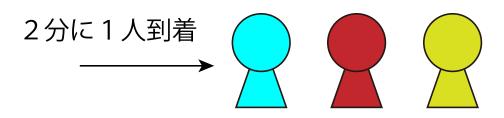


例) 到着間隔 2 分, サービス時間 5 分

待ち人数は1分当たり何人増える? ▶ 「逆数」で考える

● 到着率: 時間当たりに到着する客数

到着
$$= \frac{1}{3}$$
 到着間隔



1人当たり5分かかる

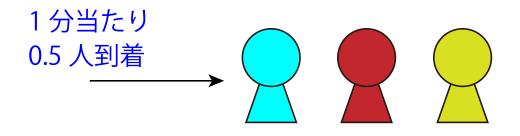


例) 到着間隔 2 分, サービス時間 5 分

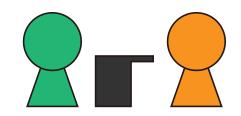
待ち人数は1分当たり何人増える? ➡ 「逆数」で考える

● 到着率: 時間当たりに到着する客数

到着率 
$$= \frac{1}{3}$$
 到着間隔



1人当たり5分かかる



例) 到着間隔 2分, サービス時間 5分

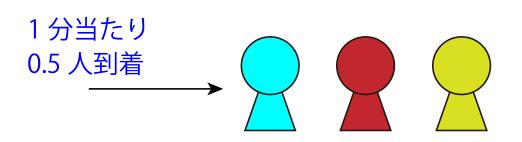
待ち人数は1分当たり何人増える? ▶ 「逆数」で考える

● 到着率: 時間当たりに到着する客数

到着率 = 
$$\frac{1}{2}$$
 到着間隔

● サービス能力: 時間当たりにサービス可能な客数

サービス能力 = 
$$\frac{1}{$$
サービス時間



1人当たり5分かかる



例) 到着間隔 2分, サービス時間 5分

待ち人数は1分当たり何人増える? ▶ 「逆数」で考える

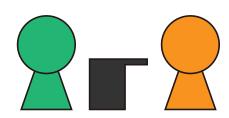
● 到着率: 時間当たりに到着する客数

到着率 = 
$$\frac{1}{2}$$
 到着間隔

● サービス能力: 時間当たりにサービス可能な客数

サービス能力 = 
$$\frac{1}{\text{サービス時間}}$$

1 分当たり 0.2 人サービス可能



例) 到着間隔 2分, サービス時間 5分

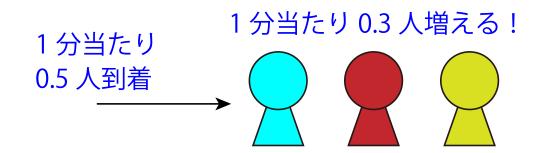
待ち人数は1分当たり何人増える? ▶ 「逆数」で考える

● 到着率: 時間当たりに到着する客数

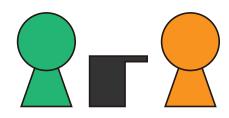
到着率 = 
$$\frac{1}{2}$$
到着間隔

● サービス能力: 時間当たりにサービス可能な客数

サービス能力 = 
$$\frac{1}{$$
サービス時間



1 分当たり 0.2 人サービス可能



例) 到着間隔 2分, サービス時間 5分

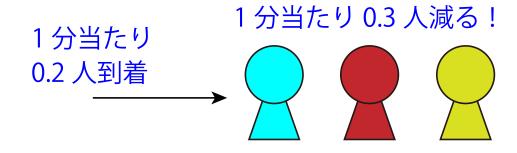
待ち人数は1分当たり何人増える? ▶ 「逆数」で考える

● 到着率: 時間当たりに到着する客数

到着率 = 
$$\frac{1}{2}$$
 到着間隔

● サービス能力: 時間当たりにサービス可能な客数

サービス能力 = 
$$\frac{1}{$$
サービス時間



1 分当たり 0.5 人サービス可能



- 「待ち」が発生する原因
  - 1. 過負荷: 到着間隔が、サービス時間より短い
    - ➡ 時間が経つにつれて、「待ち」は限りなく増えていく
  - 2. ランダムネス: 到着間隔とサービス時間の「ばらつき」
    - 到着間隔の平均がサービス時間の平均より長くても、 大きな「ばらつき」が、大きな「待ち」を引き起こす

- 「待ち」が発生する原因
  - 1. 過負荷: 到着間隔が、サービス時間より短い
    - ➡ 時間が経つにつれて、「待ち」は限りなく増えていく
  - 2. ランダムネス: 到着間隔とサービス時間の「ばらつき」
    - 到着間隔の平均がサービス時間の平均より長くても、 大きな「ばらつき」が、大きな「待ち」を引き起こす

- 「待ち」が発生する原因
  - 1. 過負荷: 到着間隔が、サービス時間より短い
    - ➡ 時間が経つにつれて、「待ち」は限りなく増えていく
  - 2. ランダムネス: 到着間隔とサービス時間の「ばらつき」
    - 到着間隔の平均がサービス時間の平均より長くても、 大きな「ばらつき」が、大きな「待ち」を引き起こす
- 世の中にある「待ち」の大半は過負荷とランダムネスで説明可能

# 単一サーバ待ち行列の公式 (1)

- 単一サーバ待ち行列の公式
  - ◆ 到着間隔・サービス時間が指数分布に従う (ランダム) と仮定
  - ◆ 平均到着間隔 > 平均サービス時間 (非過負荷) を仮定

「無限に長い時間」にわたって待ち行列を観測

## 単一サーバ待ち行列の公式 (1)

- 単一サーバ待ち行列の公式
  - ◆ 到着間隔・サービス時間が指数分布に従う (ランダム) と仮定
  - ◆ 平均到着間隔 > 平均サービス時間 (非過負荷) を仮定

「無限に長い時間」にわたって待ち行列を観測

ightharpoonup 平均待ち人数 =  $\frac{\rho}{1-\rho}$  ※サービス中の客を含む

ただし、 $\rho$  は「負荷の大きさ」を表す量であり、

$$ho = rac{ ext{平均到着率}}{ ext{平均サービス能力}}$$
 と定義される

 $(\rho はギリシア文字の「ロー」)$ 

# 単一サーバ待ち行列の公式 — $\rho$ の意味

平均到着率: 時間当たりに到着する平均客数 平均サービス能力: 時間当たりにサービス可能な平均客数

$$\bullet$$
  $\rho = \frac{\text{平均到着率}}{\text{平均サービス能力}}$  ※  $\rho$  は「稼働率」とも呼ばれる

#### 単一サーバ待ち行列の公式 — $\rho$ の意味

平均到着率: 時間当たりに到着する平均客数 平均サービス能力: 時間当たりにサービス可能な平均客数

 $% \rho$  は「稼働率」とも呼ばれる

例 1) 1 分当たり平均 10 人サービス可能 1 分当たり平均 8 人到着

## 単一サーバ待ち行列の公式 $-\rho$ の意味

平均到着率: 時間当たりに到着する平均客数 平均サービス能力: 時間当たりにサービス可能な平均客数

 $% \rho$  は「稼働率」とも呼ばれる

- 例 1) 1 分当たり平均 10 人サービス可能 1 分当たり平均 8 人到着
- 例 2) 1 時間当たり平均 5 人サービス可能 1 時間当たり平均 4 人到着
- ⇒  $\rho = 0.8$  (稼働率 80 %)

## 単一サーバ待ち行列の公式 $-\rho$ の意味

平均到着率: 時間当たりに到着する平均客数 平均サービス能力: 時間当たりにサービス可能な平均客数

$$% \rho$$
 は「稼働率」とも呼ばれる

- 例 1) 1 分当たり平均 10 人サービス可能 1 分当たり平均 8 人到着
- 例 2) 1 時間当たり平均 5 人サービス可能 1 時間当たり平均 4 人到着
- 例 3) 1 日当たり平均 3 人サービス可能 1 日当たり平均 1.5 人到着

## 単一サーバ待ち行列の公式 $-\rho$ の意味

平均到着率: 時間当たりに到着する平均客数 平均サービス能力: 時間当たりにサービス可能な平均客数

$$% \rho$$
 は「稼働率」とも呼ばれる

- 例 1) 1 分当たり平均 10 人サービス可能 1 分当たり平均 8 人到着
- 例 2) 1 時間当たり平均 5 人サービス可能 1 時間当たり平均 4 人到着
- 例 3) 1 日当たり平均 3 人サービス可能 1 日当たり平均 1.5 人到着

ightharpoonup  $\rho$  は時間のスケールに依存しない

 $% \rho$  は「稼働率」とも呼ばれる

● 単一サーバ待ち行列の公式 (再掲)

※ 到着間隔・サービス時間が指数分布に従うと仮定

「無限に長い観測期間」  $=\frac{\rho}{1-\rho}$ における平均待ち人数

 $% \rho$  は「稼働率」とも呼ばれる

● 単一サーバ待ち行列の公式 (再掲)

※ 到着間隔・サービス時間が指数分布に従うと仮定

「無限に長い観測期間」  $=\frac{\rho}{1-\rho}$ における平均待ち人数  $=\frac{1-\rho}{1-\rho}$ 

例 1)  $\rho = 0.80$  (稼働率 80 %)  $\Rightarrow$  平均待ち人数は 4 人

 $% \rho$  は「稼働率」とも呼ばれる

● 単一サーバ待ち行列の公式 (再掲)

※ 到着間隔・サービス時間が指数分布に従うと仮定

「無限に長い観測期間」  $=\frac{\rho}{1-\rho}$ における平均待ち人数

例 1)  $\rho = 0.80$  (稼働率 80 %)  $\Rightarrow$  平均待ち人数は 4 人

例 2)  $\rho = 0.90$  (稼働率 90 %)  $\Rightarrow$  平均待ち人数は 9人

$$ho = \frac{$$
平均到着率  $}{$ 平均サービス能力

 $% \rho$  は「稼働率」とも呼ばれる

● 単一サーバ待ち行列の公式 (再掲)

※ 到着間隔・サービス時間が指数分布に従うと仮定

「無限に長い観測期間」 
$$=\frac{\rho}{1-\rho}$$
における平均待ち人数

例 1)  $\rho = 0.80$  (稼働率 80 %)  $\Rightarrow$  平均待ち人数は 4 人

例 2)  $\rho = 0.90$  (稼働率 90 %)  $\Rightarrow$  平均待ち人数は 9 人

例 3)  $\rho = 0.95$  (稼働率 95 %)  $\Rightarrow$  平均待ち人数は 19 人

$$ho = \frac{$$
平均到着率  $}{$ 平均サービス能力

 $% \rho$  は「稼働率」とも呼ばれる

● 単一サーバ待ち行列の公式 (再掲)

※ 到着間隔・サービス時間が指数分布に従うと仮定

「無限に長い観測期間」 
$$=\frac{\rho}{1-\rho}$$
における平均待ち人数

例 1)  $\rho = 0.80$  (稼働率 80 %)  $\Rightarrow$  平均待ち人数は 4 人

例 2)  $\rho = 0.90$  (稼働率 90 %)  $\Rightarrow$  平均待ち人数は 9 人

例 3)  $\rho = 0.95$  (稼働率 95 %)  $\Rightarrow$  平均待ち人数は 19 人

例 4)  $\rho = 0.98$  (稼働率 98 %)  $\Rightarrow$  平均待ち人数は 49 人

$$ho = \frac{$$
平均到着率  $}{$ 平均サービス能力

 $% \rho$  は「稼働率」とも呼ばれる

● 単一サーバ待ち行列の公式 (再掲)

※ 到着間隔・サービス時間が指数分布に従うと仮定

「無限に長い観測期間」 
$$=\frac{\rho}{1-\rho}$$
における平均待ち人数

例 1)  $\rho = 0.80$  (稼働率 80 %)  $\Rightarrow$  平均待ち人数は 4 人

例 2)  $\rho = 0.90$  (稼働率 90 %)  $\Rightarrow$  平均待ち人数は 9 人

例 3)  $\rho = 0.95$  (稼働率 95 %)  $\Rightarrow$  平均待ち人数は 19 人

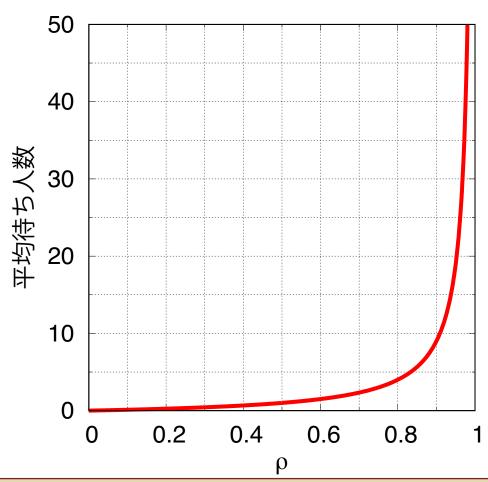
例 4)  $\rho = 0.98$  (稼働率 98 %)  $\Rightarrow$  平均待ち人数は 49 人

 $\rho=1$  (稼働率 100 %) に近づくにつれて「待ち」は爆発的に増大する

$$ho = \frac{$$
平均到着率  $}{$ 平均サービス能力

 $% \rho$  は「稼働率」とも呼ばれる

 $\bullet$  単一サーバ待ち行列の公式  $\cdots$  平均待ち人数  $=\frac{\rho}{1-\rho}$ 

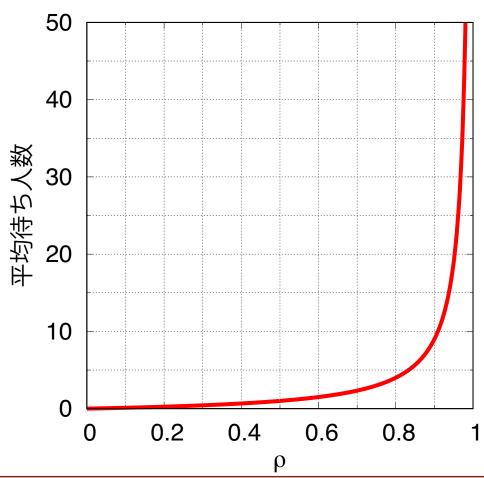


◆  $\rho = 1$  に近づくにつれて, 「待ち」は爆発的に増大

$$ho = \frac{$$
平均到着率  $}{$ 平均サービス能力

 $% \rho$  は「稼働率」とも呼ばれる

ullet 単一サーバ待ち行列の公式  $\cdots$  平均待ち人数  $=\frac{
ho}{1ho}$ 

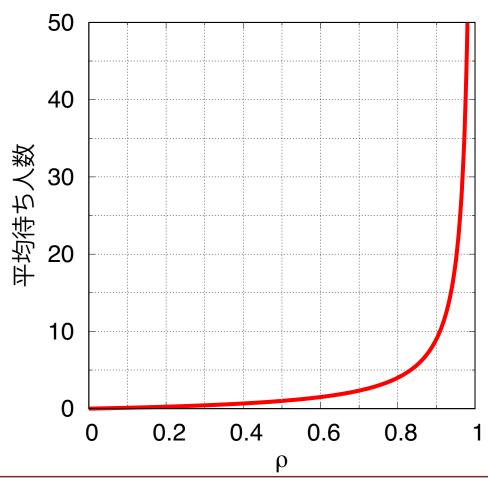


- ◆ 大きな「待ち」を起こさない ためには、「ゆとり」が必要

$$ho = \dfrac{ ext{平均到着率}}{ ext{平均サービス能力}}$$

 $% \rho$  は「稼働率」とも呼ばれる

 $\bullet$  単一サーバ待ち行列の公式  $\cdots$  平均待ち人数  $=\frac{\rho}{1-\rho}$ 



- ◆ ρ = 1 に近づくにつれて, 「待ち」は爆発的に増大
- ◆ 大きな「待ち」を起こさない ためには、「ゆとり」が必要
- ◆「待ち」が非常に大きな状況
  - → ρ をほんの少し減らすだけで大幅な改善が望める

サーバを増やす効果

 $ho = \frac{$ 平均到着率  $}{$ 平均サービス能力

 $% \rho$  は「稼働率」とも呼ばれる

サーバをひとつ増やす効果

(例) サーバ数を 1 から 2 に増やしてみる

- サーバ数は 2 倍
- 「待ち」は半分になる?

 $% \rho$  は「稼働率」とも呼ばれる

サーバをひとつ増やす効果

(例) サーバ数を 1 から 2 に増やしてみる

- サーバ数は 2 倍
- 「待ち」は半分になる?
- ⇒ 実際には、もっと劇的に「待ち」は小さくなる!

 $ho = \frac{$ 平均到着率  $}{$ 平均サービス能力

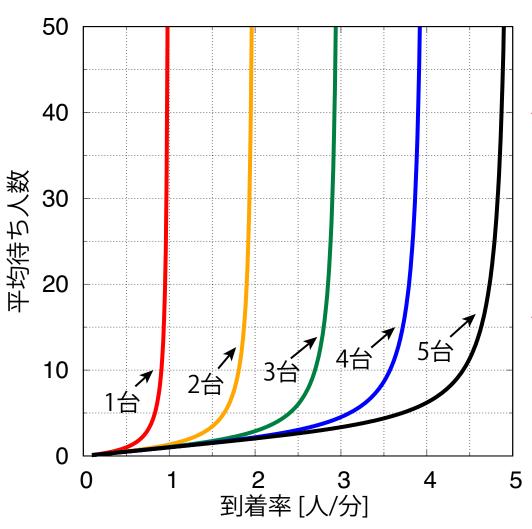
 $% \rho$  は「稼働率」とも呼ばれる

サーバをひとつ増やす効果

(例) サーバ数を 1 から 2 に増やしてみる

- サーバ数は 2 倍
- 「待ち」は半分になる?
- ⇒ 実際には、もっと劇的に「待ち」は小さくなる!
- 平均サービス能力: 時間当たりにサービス可能な平均客数
  - ◆ サーバ数が 2 倍 → 平均サービス能力も 2 倍
    - ightharpoonup 
      ho を大幅に減らすことができる

● サーバ数と平均待ち人数の関係



1 台のサービス能力 1 [人/分] (平均サービス時間 1 分)

- ◆ 到着率がサービス能力に 近いと「待ち」は急激に増大
  - サーバを 1 台増やすと 「待ち」は大きく減少
- ◆ 到着率がサービス能力 より十分小さいとき
  - サーバを増やしても 効果は限定的

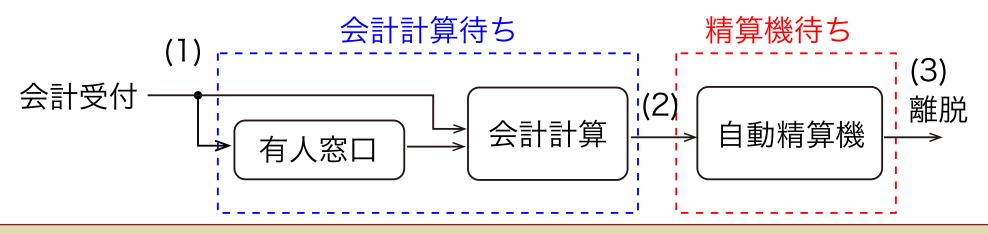
データ分析再訪

## データの前処理 (再掲)

- 各患者のレコードから、3種類の時刻を取得
  - (1) 会計受付時刻, (2) 会計計算完了時刻, (3) 支払い完了時刻

これらを集計することで、各時刻における待ち人数が計算可能

- ◆ 会計計算待ち人数: (1) を終えて、(2) が未完了の総人数
- ◆ 精算機待ち人数: (2) を終えて、(3) が未完了の総人数
- ▶ 各日付について、待ち人数のピーク値をそれぞれ求めた



# 平均ピーク待ち人数 (再掲)

● 有効受付数 (分析対象の来院患者数)

|          | 月曜日  | 火曜日  | 水曜日  | 木曜日  | 金曜日  |
|----------|------|------|------|------|------|
| 2015 年平均 | 1413 | 1545 | 1534 | 1422 | 1355 |
| 2016 年平均 | 1420 | 1518 | 1522 | 1490 | 1334 |

#### ● 会計計算待ち

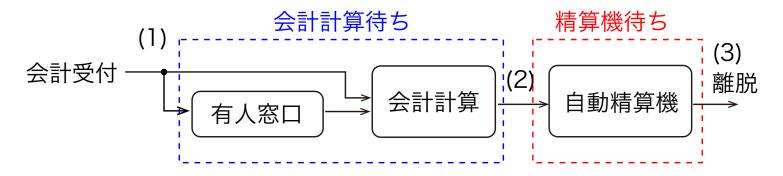
|          | 月曜日 | 火曜日 | 水曜日 | 木曜日 | 金曜日 |
|----------|-----|-----|-----|-----|-----|
| 2015 年平均 | 46  | 55  | 57  | 46  | 45  |
| 2016 年平均 | 62  | 77  | 73  | 63  | 61  |

#### ● 精算機待ち

|          | 月曜日 | 火曜日 | 水曜日 | 木曜日 | 金曜日 |
|----------|-----|-----|-----|-----|-----|
| 2015 年平均 | 46  | 82  | 61  | 42  | 43  |
| 2016 年平均 | 51  | 84  | 60  | 47  | 43  |

火曜日と水曜日では、有効受付数は同程度 精算機での「待ち」が火曜日に大きくなるのはなぜだろうか?

#### 到着率とサービス能力



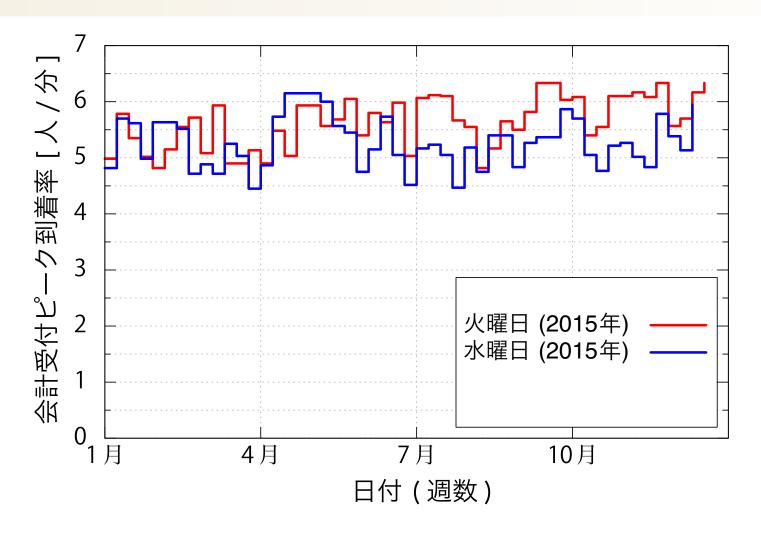
待ち行列理論からの示唆 …… 待ち人数を決めるのは

- 到着率: 時間当たりに到着する患者数
  - ➡ データから計算可能

今回は、30分ごとの(移動)平均を取り、そのピーク値に注目

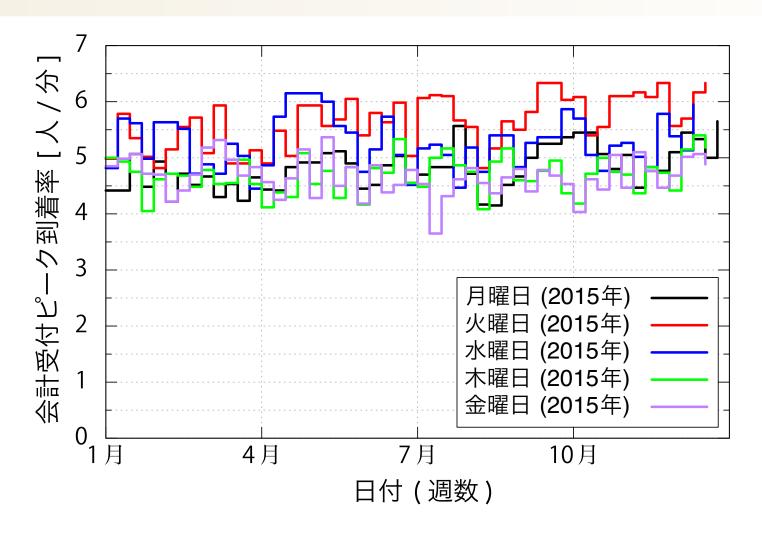
- サービス能力: 時間当たりにサービス可能な患者数
  - ▶ 過負荷の場合、離脱率と一致しデータから推定可能

## 会計受付へのピーク到着率



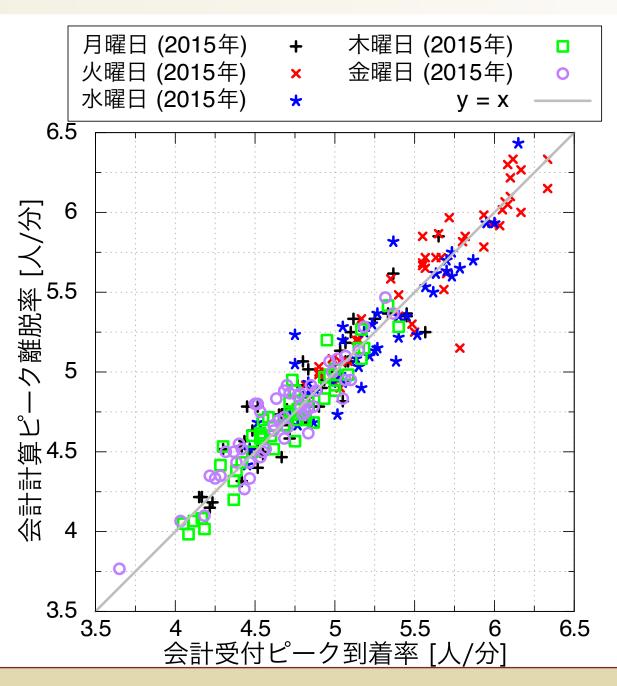
- ほとんどの日付において、火曜日が水曜日を上回る (図は 2015 年のデータ. 2016 年も同様の傾向)
  - ▶ 火曜日の方が、会計受付時刻の偏りが大きい

### 会計受付へのピーク到着率



- ほとんどの日付において、火曜日が水曜日を上回る (図は 2015 年のデータ. 2016 年も同様の傾向)
  - ▶ 火曜日の方が、会計受付時刻の偏りが大きい

## 会計計算ピーク到着率と離脱率

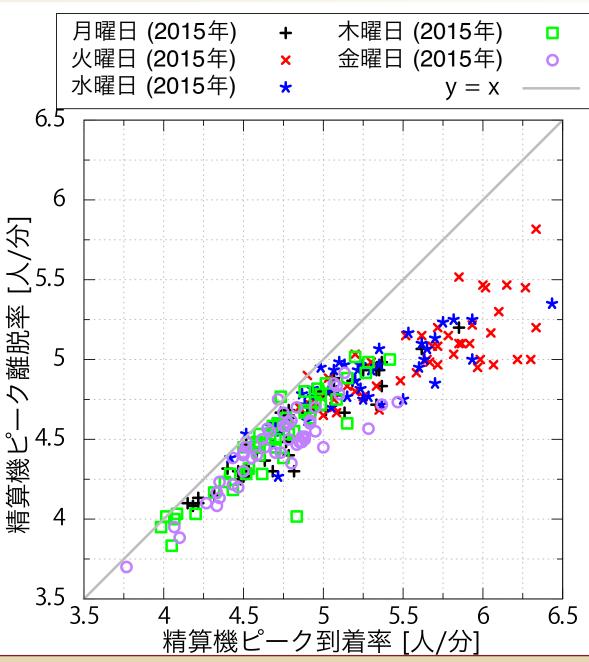


- おおむね直線的に増加
- 過負荷状態ではない

#### 会計計算ピーク到着率と待ち人数



## 精算機ピーク到着率と離脱率

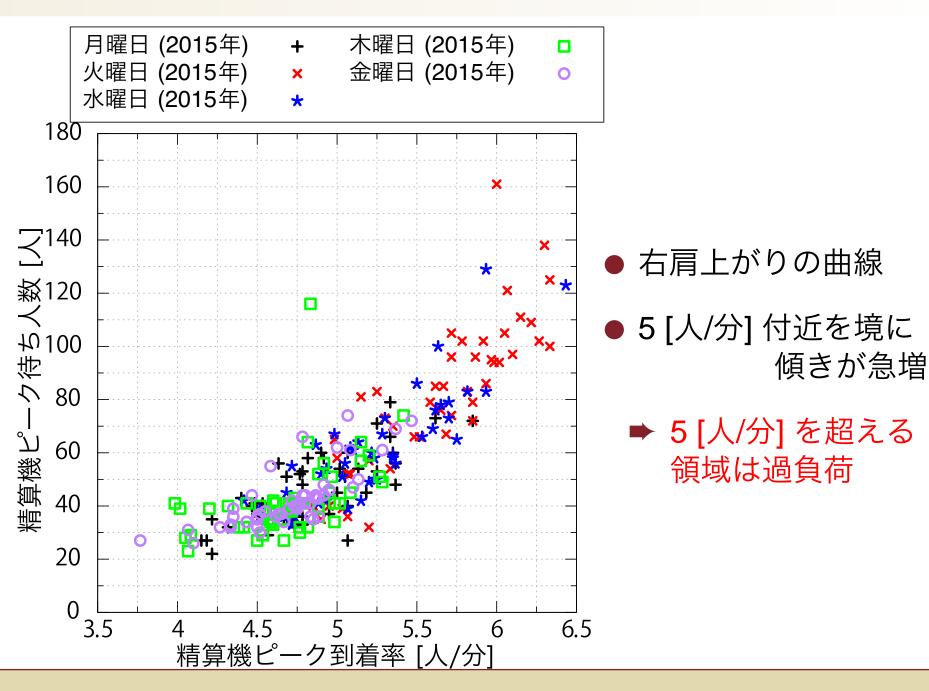


- おおむね直線的に増加
- 5 [人/分] 付近で飽和

#### 精算機は5台

▶ 精算の平均所要時間 はおよそ1分

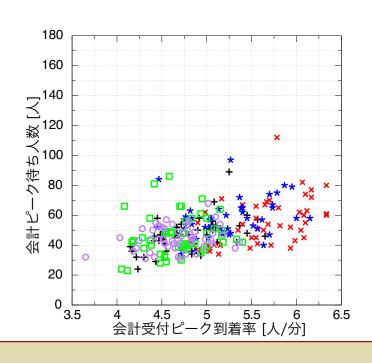
## 精算機ピーク到着率と待ち人数

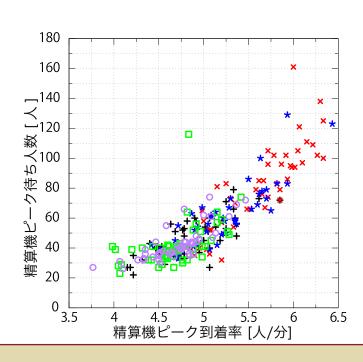


## 理論を元にした分析からわかること (1)

ピーク到着率は、ピーク待ち人数をよく説明する

- サービス能力 > ピーク到着率のときピーク到着率が増加 ➡ ピーク待ち人数は緩やかに増加
- サービス能力 < ピーク到着率のとき (過負荷)</li>ピーク到着率が増加 → ピーク待ち人数は急激に増加





## 理論を元にした分析からわかること (2)

「待ち」への基本的な対処法

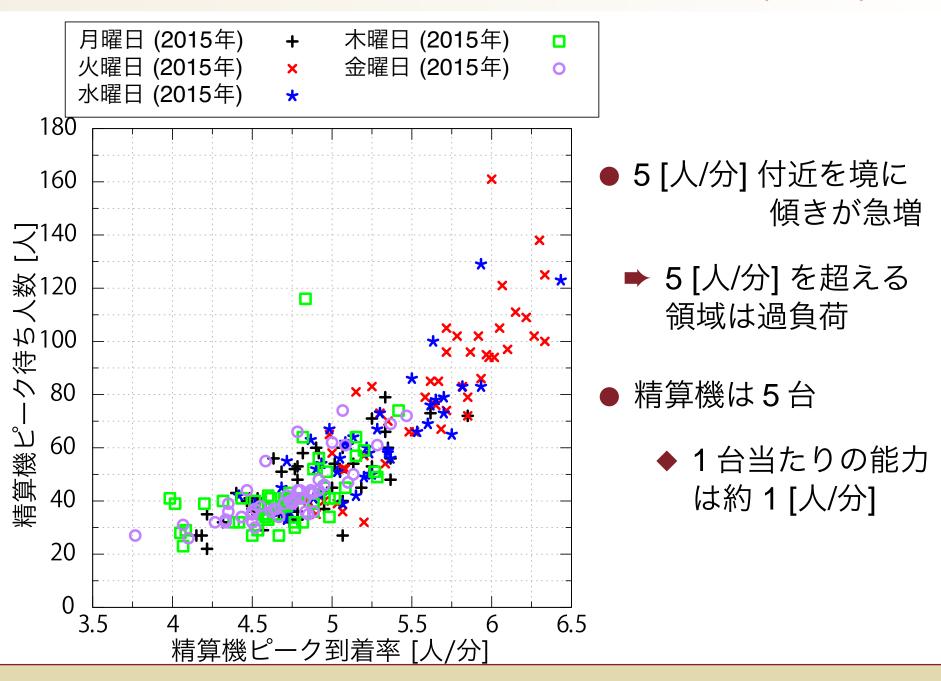
- 過負荷の場合
  - (a) ピーク到着率を減らす (入場制限 & ピーク緩和)
  - (b) サービス能力を上げる (サーバを増やす)
- 非過負荷の場合
  - (a) ピーク到着率を減らす
  - (b) サービス能力を上げる

加えて,

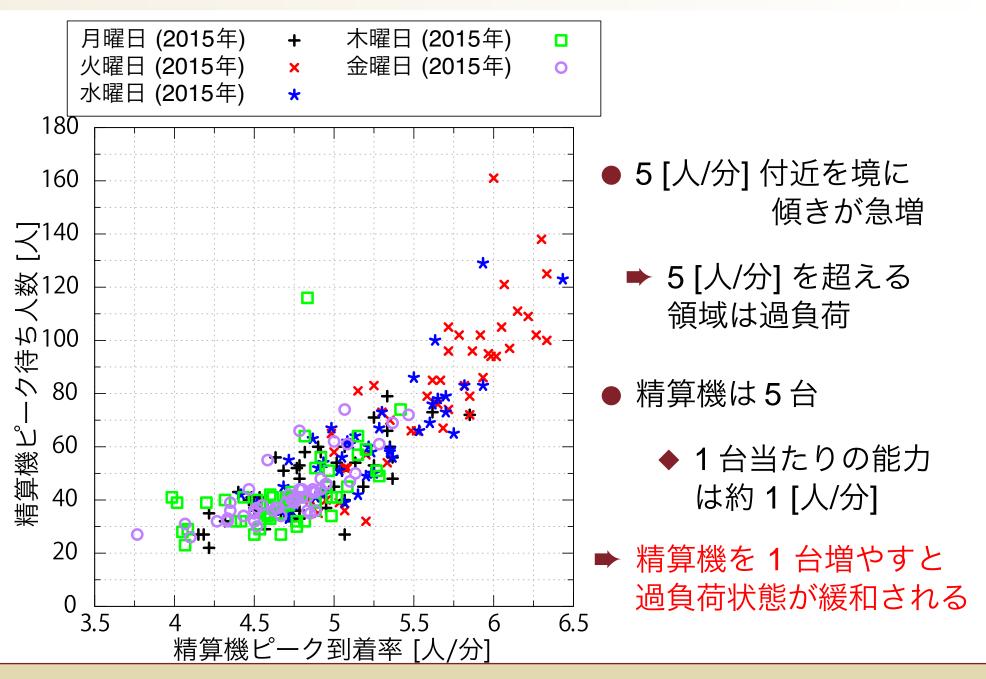
(c) サービス時間のばらつきを減らす ことも効果的

特に, (a) と (b) の効果は、今回のデータでもある程度予想可能

# 精算機ピーク到着率と待ち人数 (再掲)



# 精算機ピーク到着率と待ち人数 (再掲)



#### まとめ

#### 病院内に蓄積された 「既存データ」の活用

- 大量のデータが利用可能
  - ◆ 手作業では収集困難な ほど膨大な情報を含む
  - **➡**「ばらつき」が大きな
    現象の実態を俯瞰できる
- 本講演では、「待ち」を分析
  - ◆ 2年間に渡って, 各時刻 での待ち人数を算出
  - ▶ 外来での「待ち」の 実態把握が可能

#### 病院で生じる「待ち」の問題 に対する定量的アプローチ

- 理論的な知見に基づくと, 踏み込んだデータ分析が可能
- 待ち行列理論の知見

稼働率  $\rho$  が鍵となる 平均到着率  $\rho = \frac{\text{平均到着率}}{\text{平均サービス能力}}$ 

- ◆ ρ > 1 ➡ 待ちは際限なく 増大し続ける
- ◆ ρ が 1 に近い ➡ 大混雑
- ◆ 待ちが小さくなるのは 1-ρ (余裕) が大きい状況