Aol Perspective on the Accuracy of Monitoring Systems for Continuous-Time Markovian Sources

*Yoshiaki Inoue and Tetsuya Takine

Osaka University, Japan

Remote Monitoring System

The state of an information source is monitored over time

Information Source (Stochastic Process)

The monitor displays the latest state information received

• A_t : Age of Information (AoI) at time t

 $A_t \triangleq t - \eta_t, \quad t \in \mathbb{R}$

 η_t : Time-stamp of the displayed information at time *t*

Aol and Monitoring Accuracy

A target value of the Aol

is highly dependent on the information source dynamics

If the information source is

- slowly varying in time
 - A fairly large value of the AoI would be acceptable
- quickly varying in time
 - ► A strict limit for the AoI would be imposed

Related Works (1)

Only a few works discuss the relation between the AoI and the information source dynamics

- The age of channel state information [Costa et al. (2015)]
 - Modeled as a discrete-time Markov chain with two states
- Optimal samplings of
 - Wiener processes [Sun et al. (2017)]
 - Minimization of the mean squared error
 - Discrete-time Markov chains [Sun and Cyr (2018)]
 - Maximization of the mutual information

Related Works (2)

An optimal sampling of Wiener processes [Sun et al. (2017)]

• The mean squared error

 $MSE = E\left[(Y_t - \hat{Y}_t)^2\right]$

 Y_t : Actual state at time t, \hat{Y}_t : Displayed state at time t

A state-dependent sampling policy is optimal

- An update is generated when $|Y_t \hat{Y}_t|$ exceeds a threshold
- If sampling timings are independent of the monitored state,

 $MSE = E[A] \qquad E[A]: Mean Aol$

- We consider a monitoring system, where
 - A continuous-time Markov chain $(Y_t)_{t \in \mathbb{R}}$ is monitored
 - The AoI process $(A_t)_{t \in \mathbb{R}}$ is independent of $(Y_t)_{t \in \mathbb{R}}$
- Main contributions:
 - Derive an expression for an accuracy matrix R[R]_{*i*,*j*} := Pr(Displayed state = *j* | Actual state = *i*)

- We consider a monitoring system, where
 - A continuous-time Markov chain $(Y_t)_{t \in \mathbb{R}}$ is monitored
 - The AoI process $(A_t)_{t \in \mathbb{R}}$ is independent of $(Y_t)_{t \in \mathbb{R}}$
- Main contributions:
 - Derive an expression for an accuracy matrix R[R]_{*i*,*j*} := Pr(Displayed state = *j* | Actual state = *i*)

• Obtain lower and upper bounds for $[\mathbf{R}]_{i,i}$

 $[\mathbf{R}]_{i,i} = \Pr(\text{Displayed state is correct} | \text{Actual state} = i)$

- We consider a monitoring system, where
 - A continuous-time Markov chain $(Y_t)_{t \in \mathbb{R}}$ is monitored
 - The AoI process $(A_t)_{t \in \mathbb{R}}$ is independent of $(Y_t)_{t \in \mathbb{R}}$
- Main contributions:
 - Derive an expression for an accuracy matrix R[R]_{*i*,*j*} := Pr(Displayed state = *j* | Actual state = *i*)
 - Obtain lower and upper bounds for $[\mathbf{R}]_{i,i}$
 - In particular, we show that $[\mathbf{R}]_{i,i} \ge 1 q_i \mathbf{E}[A]$

 q_i : Transition rate of $(Y_t)_{t \in \mathbb{R}}$ from state *i*

- We consider a monitoring system, where
 - A continuous-time Markov chain $(Y_t)_{t \in \mathbb{R}}$ is monitored
 - The AoI process $(A_t)_{t \in \mathbb{R}}$ is independent of $(Y_t)_{t \in \mathbb{R}}$
- Main contributions:
 - Derive an expression for an accuracy matrix R[R]_{*i*,*j*} := Pr(Displayed state = *j* | Actual state = *i*)
 - Obtain lower and upper bounds for $[R]_{i,i}$
 - In particular, we show that $[\mathbf{R}]_{i,i} \ge 1 q_i \mathbf{E}[A]$

 q_i : Transition rate of $(Y_t)_{t \in \mathbb{R}}$ from state *i*

Develop a computational method for R in a special case

Model Description

Continuous-Time Markov Source

- The monitored continuous-time Markov chain $(Y_t)_{t \in \mathbb{R}}$ is
 - stationary ergodic with finite state space $\mathcal{M} = \{1, 2, \dots, M\}$
 - characterized by transition rates $q_{i,j}$ $(i, j \in \mathcal{M}, i \neq j)$

• $q_i := \sum_{j \in \mathcal{M}, j \neq i} q_{i,j}$ Transition rate from *i*

Continuous-Time Markov Source

- The monitored continuous-time Markov chain $(Y_t)_{t \in \mathbb{R}}$ is
 - stationary ergodic with finite state space $\mathcal{M} = \{1, 2, \dots, M\}$
 - characterized by transition rates $q_{i,j}$ $(i, j \in \mathcal{M}, i \neq j)$
 - $q_i := \sum_{j \in \mathcal{M}, j \neq i} q_{i,j}$ Transition rate from *i*
 - Sojourn time at state *i* follows an exponential distribution with mean 1/q_i
 - with probability $q_{i,j}/q_i$, a transition to state *j* occurs

Continuous-Time Markov Source

• The monitored continuous-time Markov chain $(Y_t)_{t \in \mathbb{R}}$ is

• stationary ergodic with finite state space $\mathcal{M} = \{1, 2, \dots, M\}$

• characterized by transition rates $q_{i,j}$ $(i, j \in \mathcal{M}, i \neq j)$

• $q_i := \sum_{j \in \mathcal{M}, j \neq i} q_{i,j}$ Transition rate from *i*

• **Q**: Infinitesimal generator of $(Y_t)_{t \in \mathbb{R}}$

$$[\mathbf{Q}]_{i,j} = \begin{cases} -q_i, & j=i, \\ q_{i,j}, & j\neq i \end{cases}$$

• $\pi = (\pi_1, \pi_2, \dots, \pi_M)$: Stationary probability vector of $(Y_t)_{t \in \mathbb{R}}$

 $\pi_i = \Pr(Y_t = i), \quad \pi Q = 0$ (Balance equation)

Aol Process and Displayed State

• The AoI process $(A_t)_{t \in \mathbb{R}}$ is assumed to be

- stationary and ergodic
- independent of the Markovian information source $(Y_t)_{t \in \mathbb{R}}$

• \hat{Y}_t : The displayed state on the monitor at time t

 $\hat{Y}_t = Y_{t-A_t}, \quad t \in \mathbb{R}$

We have the following result:

Lemma 1. $(\hat{Y}_t)_{t \in \mathbb{R}}$ is a stationary, ergodic stochastic process with $\Pr(\hat{Y}_t = i) = \Pr(Y_t = i) \quad (= \pi_i), \quad i \in \mathcal{M}$

Main Results

Stochastic Matrices R and \overline{R} (1)

We introduce two matrices R and \overline{R}

• The (i, j)th element of **R** is given by

 $r_{i,j} := \Pr(\text{Displayed state} = j | \text{Actual state} = i)$

• The (i, j)th element of \overline{R} is given by

 $\overline{r}_{i,j} := \Pr(\text{Actual state} = j | \text{Displayed state} = i)$

We can show that the following relation holds w.p. 1

$$r_{i,j} = \lim_{T \to \infty} \frac{\int_{-T/2}^{T/2} \mathbb{1} \{Y_t = i\} \mathbb{1} \{\hat{Y}_t = j\} dt}{\int_{-T/2}^{T/2} \mathbb{1} \{Y_t = i\} dt}$$

 $\overline{r}_{i,j}$ also satisfies a similar relation

Stochastic Matrices R and \overline{R} (2)

 $[\mathbf{R}]_{i,j} = r_{i,j} := \Pr(\text{Displayed state} = j \mid \text{Actual state} = i)$ $[\overline{\mathbf{R}}]_{i,j} = \overline{r}_{i,j} := \Pr(\text{Actual state} = j \mid \text{Displayed state} = i)$

From Lemma 1 and Baye's formula, we have

$$r_{i,j} = \frac{\pi_j \overline{r}_{j,i}}{\pi_i}$$
, and equivalently, $\boldsymbol{R} = \boldsymbol{\Pi}^{-1} \overline{\boldsymbol{R}}^\top \boldsymbol{\Pi}$

 $\pi_i = \Pr(\underline{Y_t} = i) = \Pr(\hat{Y_t} = i), \qquad \Pi = \operatorname{diag}(\pi_1, \pi_2, \dots, \pi_M)$

• In particular, we have $r_{i,i} = \overline{r}_{i,i} =: r_i$

 $r_i = \Pr(\text{Displayed state} = i | \text{Actual state} = i)$

= Pr(Actual state = i | Displayed state = i)

 r_i is our primary quantity of interest

Formulas of R and \overline{R}

 $A(x) = \Pr(A_t \le x)$: Probability distribution function of the Aol

• We have the following result:

Theorem 2. *R* and \overline{R} are given by $R = \int_0^\infty \exp[(\Pi^{-1} Q^\top \Pi) x] dA(x),$ $\overline{R} = \int_0^\infty \exp[Qx] dA(x).$

- **Q**: Infinitesimal generator of $(Y_t)_{t \in \mathbb{R}}$
- $\mathbf{\Pi} = \operatorname{diag}(\pi_1, \pi_2, \dots, \pi_M)$

 $\Pi^{-1} Q^{\top} \Pi$ can be regarded as the infinitesimal generator of the time-reversed process $(Y_{-t})_{t \in \mathbb{R}}$

Bounds of r_i (1)

- $r_i = \Pr(\text{Displayed state} = i | \text{Actual state} = i)$
 - We can derive the following bounds for r_i :

Theorem 3. r_i is bounded by $a^*(q_i) \le r_i \le 1 - (a^*(q_{\max}) - a^*(q_i + q_{\max}))$ $a^*(s) = E[e^{-sA_t}]$: LST of the Aol distribution

 q_i : Transition rate from state i, $q_{\max} := \max_{i \in \mathcal{M}} q_i$.

From the inequalities above, we further obtain

Corollary 1. If $E[A] < \infty$, r_i is bounded by $1 - q_i E[A] \le r_i \le 1 - q_i E[A] + \frac{(q_i + q_{\max})^2}{2} E[A^2]$

Bounds of r_i (2)

- $r_i = \Pr(\text{Displayed state} = i | \text{Actual state} = i)$
 - We have obtained the simple lower bound for r_i :

 $r_i \ge 1 - q_i \mathbf{E}[A]$

 q_i : Transition rate from state *i*, E[A]: Mean Aol

In order to ensure

```
r_i \geq 1 - \epsilon for some \epsilon > 0,
```

it is sufficient to design the system so that $E[A] \leq \frac{\epsilon}{q_i}$

Special Case: Reversible Markovian Information Source

Reversible Markov Chain

• We assume that $(Y_t)_{t \in \mathbb{R}}$ is a reversible Markov chain

 $(Y_{-t})_{t\in\mathbb{R}}$ follows the same probability law as $(Y_t)_{t\in\mathbb{R}}$

• A necessary and sufficient condition:

 $\pi_i q_{i,j} = \pi_j q_{j,i}, \quad i, j \in \mathcal{M}$ Detailed balance equations

Under this assumption, we can show that

 $S := DQD^{-1}$ is a symmetric matrix

$$\boldsymbol{D} := \operatorname{diag}(\sqrt{\pi}_1, \sqrt{\pi}_2, \dots, \sqrt{\pi}_M)$$

Computable Formula of **R**

- $S := DQD^{-1}$ is a real symmetric matrix
 - S is diagonizable by an orthogonal matrix $U = (u_1, u_2, ..., u_M)$

$$\boldsymbol{S} = \sum_{k=1}^{M} \gamma_k \boldsymbol{u}_k \boldsymbol{u}_k^{\top}$$

 γ_k : The *k*th largest eigenvalue of *S* u_k : A normalized right eigen vector of *S* associated with γ_k

We can verify that

•
$$\gamma_k \in \mathbb{R}$$
, $k = 1, 2, ..., M$
• $\gamma_1 = 0$ and $\gamma_k < 0$, $k = 2, 3, ..., M$
We define $\theta_k := -\gamma_k$ $(0 = \theta_1 < \theta_2 \le \theta_3 \cdots \le \theta_M)$

Computable Formula of **R**

• **Q** is then diagonizable as

$$\boldsymbol{Q} = \sum_{k=1}^{M} (-\theta_k) \boldsymbol{D}^{-1} \boldsymbol{u}_k \boldsymbol{u}_k^{\mathsf{T}} \boldsymbol{D} \qquad \boldsymbol{D} := \operatorname{diag}(\sqrt{\pi}_1, \sqrt{\pi}_2, \dots, \sqrt{\pi}_M)$$

Recall that
$$\mathbf{R} = \int_0^\infty \exp\left[(\mathbf{\Pi}^{-1}\mathbf{Q}^\top\mathbf{\Pi})x\right] dA(x), \quad \overline{\mathbf{R}} = \int_0^\infty \exp[\mathbf{Q}x] dA(x)$$

We can then show that

$$\boldsymbol{R} = \boldsymbol{\overline{R}} = \boldsymbol{e}\boldsymbol{\pi} + \sum_{k=2}^{M} a^*(\boldsymbol{\theta}_k) \boldsymbol{D}^{-1} \boldsymbol{u}_k \boldsymbol{u}_k^{\top} \boldsymbol{D}$$

e: Column vector with all elements equal to one
π: Stationary probability vector
a*(s): LST of the Aol distribution

Numerical Examples

Experimental Setting

• We employ three different Markov chains with 36 states

• Transition rates are fixed as $q_i = q$ ($i \in \mathcal{M}$)

Transition probabilities are homogeneous

For the monitoring system model, we use an FCFS D/M/1 queue

Numerical Result (1)

 $r_{\min} := \min_{i \in \mathcal{M}} r_i$, Transition rate q = 1, Service rate $\mu = 64$

There is little difference in r_{\min} among the three Markov chains

The lower bound 1 - qE[A]well approximates r_{min}

Numerical Result (2)

 λ for each point is chosen so that r_{\min} is maximized

When μ is large,

- The value of r_{min} is almost independent of the transition structure
- The lower bound 1 *q*E[*A*] well approximates *r*_{min}

Conclusion

- We considered a monitoring system, where
 - A continuous-time Markov chain (Y_t)_{t∈R} is monitored
 The Aol process (A_t)_{t∈R} is independent of (Y_t)_{t∈R}

• We derived an expression for the accuracy matrix **R** $[\mathbf{R}]_{i,j} = \Pr(\text{Displayed state} = j | \text{Actual state} = i)$

• We obtained a simple lower bound for $r_i := [\mathbf{R}]_{i,i}$ $r_i \ge 1 - q_i \mathbb{E}[A]$ q_i : Transition rate from state i

We developed a computing method for R in the reversible case

Through numerical experiments, we observed that the lower bound $1 - q_i E[A]$ well approximates r_i