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● The state of an information source is monitored over time

Server Monitor

Information Source
(Stochastic Process)

Network

◆ The monitor displays the latest state information received

● At : Age of Information (AoI) at time t

At , t −ηt , t ∈R

ηt : Time-stamp of the displayed information at time t
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AoI At

Server Monitor
Information Source

Network

● A target value of the AoI

is highly dependent on the information source dynamics

If the information source is

◆ slowly varying in time
➨ A fairly large value of the AoI would be acceptable

◆ quickly varying in time
➨ A strict limit for the AoI would be imposed
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Only a few works discuss the relation
between the AoI and the information source dynamics

● The age of channel state information [Costa et al. (2015)]

◆ Modeled as a discrete-time Markov chain with two states

● Optimal samplings of

◆ Wiener processes [Sun et al. (2017)]

■ Minimization of the mean squared error

◆ Discrete-time Markov chains [Sun and Cyr (2018)]

■ Maximization of the mutual information
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An optimal sampling of Wiener processes [Sun et al. (2017)]

● The mean squared error

MSE = E
[

(Yt − Ŷt )2
]

Yt : Actual state at time t , Ŷt : Displayed state at time t

● A state-dependent sampling policy is optimal

◆ An update is generated when |Yt − Ŷt | exceeds a threshold

● If sampling timings are independent of the monitored state,

MSE = E[A] E[A]: Mean AoI
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● We consider a monitoring system, where

◆ A continuous-time Markov chain (Yt )t∈R is monitored
◆ The AoI process (At )t∈R is independent of (Yt )t∈R

● Main contributions:

◆ Derive an expression for an accuracy matrix R

[R]i , j := Pr
(

Displayed state= j |Actual state= i
)
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● We consider a monitoring system, where

◆ A continuous-time Markov chain (Yt )t∈R is monitored
◆ The AoI process (At )t∈R is independent of (Yt )t∈R

● Main contributions:

◆ Derive an expression for an accuracy matrix R

[R]i , j := Pr
(

Displayed state= j |Actual state= i
)

◆ Obtain lower and upper bounds for [R]i ,i

■ In particular, we show that [R]i ,i ≥ 1−qi E[A]

qi : Transition rate of (Yt )t∈R from state i

◆ Develop a computational method for R in a special case
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● The monitored continuous-time Markov chain (Yt )t∈R is

◆ stationary ergodic with finite state space M = {1,2, . . . , M }

◆ characterized by transition rates qi , j (i , j ∈M , i 6= j )

■ qi :=
∑

j∈M , j 6=i

qi , j Transition rate from i
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● The monitored continuous-time Markov chain (Yt )t∈R is

◆ stationary ergodic with finite state space M = {1,2, . . . , M }

◆ characterized by transition rates qi , j (i , j ∈M , i 6= j )

■ qi :=
∑

j∈M , j 6=i

qi , j Transition rate from i

■ Sojourn time at state i follows an exponential
distribution with mean 1/qi

➨ with probability qi , j /qi , a transition to state j occurs



Continuous-Time Markov Source

8 / 24

● The monitored continuous-time Markov chain (Yt )t∈R is

◆ stationary ergodic with finite state space M = {1,2, . . . , M }

◆ characterized by transition rates qi , j (i , j ∈M , i 6= j )

■ qi :=
∑

j∈M , j 6=i

qi , j Transition rate from i

● Q: Infinitesimal generator of (Yt )t∈R

[Q]i , j =
{

−qi , j = i ,

qi , j , j 6= i

● π= (π1,π2, . . . ,πM ): Stationary probability vector of (Yt )t∈R

πi = Pr(Yt = i ), πQ = 0 (Balance equation)
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● The AoI process (At )t∈R is assumed to be

◆ stationary and ergodic
◆ independent of the Markovian information source (Yt )t∈R

● Ŷt : The displayed state on the monitor at time t

Ŷt = Yt−At , t ∈R

We have the following result:

Lemma 1. (Ŷt )t∈R is a stationary, ergodic
stochastic process with

Pr(Ŷt = i ) = Pr(Yt = i ) (=πi ), i ∈M
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We introduce two matrices R and R

● The (i , j )th element of R is given by

ri , j := Pr(Displayed state = j |Actual state = i )

● The (i , j )th element of R is given by

r i , j := Pr(Actual state = j |Displayed state = i )

We can show that the following relation holds w.p. 1

ri , j = lim
T→∞

∫T /2

−T /2
1 {Yt = i }1

{

Ŷt = j
}

dt

∫T /2

−T /2
1 {Yt = i }dt

r i , j also satisfies
a similar relation
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[R]i , j = ri , j := Pr(Displayed state = j |Actual state = i )

[R]i , j = r i , j := Pr(Actual state = j |Displayed state = i )

● From Lemma 1 and Baye’s formula, we have

ri , j =
π j r j ,i

πi
, and equivalently, R =Π

−1R
⊤
Π

πi = Pr(Yt = i ) = Pr(Ŷt = i ), Π= diag(π1,π2, . . . ,πM )

● In particular, we have ri ,i = r i ,i =: ri

ri = Pr(Displayed state = i |Actual state = i )

= Pr(Actual state = i |Displayed state = i )

ri is our primary quantity of interest
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A(x) = Pr(At ≤ x): Probability distribution function of the AoI

● We have the following result:

Theorem 2. R and R are given by

R =
∫∞

0
exp

[

(Π−1Q⊤
Π)x

]

dA(x),

R =
∫∞

0
exp[Qx]dA(x).

Q: Infinitesimal generator of (Yt )t∈R

Π= diag(π1,π2, . . . ,πM )

Π
−1Q⊤

Π can be regarded as the infinitesimal generator
of the time-reversed process (Y−t )t∈R
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ri = Pr(Displayed state = i |Actual state = i )

● We can derive the following bounds for ri :

Theorem 3. ri is bounded by

a∗(qi ) ≤ ri ≤ 1− (a∗(qmax)−a∗(qi +qmax))

a∗(s) = E[e−s At ]: LST of the AoI distribution
qi : Transition rate from state i , qmax := max

i∈M

qi .

● From the inequalities above, we further obtain

Corollary 1. If E[A] <∞, ri is bounded by

1−qi E[A] ≤ ri ≤ 1−qi E[A]+
(qi +qmax)2

2
E[A2]
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ri = Pr(Displayed state = i |Actual state = i )

● We have obtained the simple lower bound for ri :

ri ≥ 1−qi E[A]

qi : Transition rate from state i , E[A]: Mean AoI

In order to ensure

ri ≥ 1−ǫ for some ǫ> 0,

it is sufficient to design the system so that

E[A] ≤
ǫ

qi



Special Case: Reversible Markovian
Information Source
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Reversible Markov Chain
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● We assume that (Yt )t∈R is a reversible Markov chain

(Y−t )t∈R follows the same probability law as (Yt )t∈R

◆ A necessary and sufficient condition:
πi qi , j = π j q j ,i , i , j ∈M Detailed balance equations

● Under this assumption, we can show that

S := DQD−1 is a symmetric matrix

D := diag(
p
π1,

p
π2, . . . ,

p
πM )
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S := DQD−1 is a real symmetric matrix

● S is diagonizable by an orthogonal matrix U = (u1,u2, . . . ,uM )

S =
M
∑

k=1

γk uk u⊤
k

γk : The kth largest eigenvalue of S

uk : A normalized right eigen vector of S associated with γk

We can verify that

◆ γk ∈R, k = 1,2, . . . , M

◆ γ1 = 0 and γk < 0, k = 2,3, . . . , M

● We define θk := −γk (0 = θ1 < θ2 ≤ θ3 · · · ≤ θM )



Computable Formula of R
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● Q is then diagonizable as

Q =
M
∑

k=1

(−θk )D−1uk u⊤
k D D := diag(

p
π1,

p
π2, . . . ,

p
πM )

Recall that R =
∫∞

0
exp

[

(Π−1Q⊤
Π)x

]

dA(x), R =
∫∞

0
exp[Qx]dA(x)

We can then show that

R = R = eπ+
M
∑

k=2

a∗(θk )D−1uk u⊤
k D

e: Column vector with all elements equal to one
π: Stationary probability vector
a∗(s): LST of the AoI distribution
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Birth-Death
36 states

Grid Tree

7 
st

at
es

7 states

7 s
tat

es

7 states

7 states

● We employ three different Markov chains with 36 states

◆ Transition rates are fixed as qi = q (i ∈M )
◆ Transition probabilities are homogeneous

For the monitoring system model, we use an FCFS D/M/1 queue
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There is little difference in rmin

among the three Markov chains

The lower bound 1−qE[A]

well approximates rmin

rmin := min
i∈M

ri , Transition rate q = 1, Service rate µ= 64
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λ for each point is chosen
so that rmin is maximized

When µ is large,

◆ The value of rmin is
almost independent of
the transition structure

◆ The lower bound 1−qE[A]

well approximates rmin

rmin := min
i∈M

ri , Transition rate q = 1
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● We considered a monitoring system, where

◆ A continuous-time Markov chain (Yt )t∈R is monitored
◆ The AoI process (At )t∈R is independent of (Yt )t∈R

● We derived an expression for the accuracy matrix R

[R]i , j = Pr
(

Displayed state= j |Actual state= i
)

● We obtained a simple lower bound for ri := [R]i ,i

ri ≥ 1−qi E[A] qi : Transition rate from state i

● We developed a computing method for R in the reversible case

Through numerical experiments, we observed that
the lower bound 1−qi E[A] well approximates ri
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