The 2nd Age of Information Workshop (Aol'19) in conjunction with IEEE INFOCOM 2019

Aol Perspective on the Accuracy of Monitoring Systems
for Continuous-Time Markovian Sources

*Yoshiaki Inoue and Tetsuya Takine

Osaka University, Japan

1/24



Remote Monitoring System

® The state of an information source is monitored over time

Information Source
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¢ The monitor displays the latest state information received

® A;. Age of Information (Aol) at time ¢
Ay il L —1y, reR
n¢. Time-stamp of the displayed information at time ¢
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Aol and Monitoring Accuracy
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® A target value of the Aol

IS highly dependent on the information source dynamics

If the information source is
¢ slowly varying in time

=» A fairly large value of the Aol would be acceptable

¢ quickly varying in time
= A strict limit for the Aol would be imposed
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Related Works (1)

Only a few works discuss the relation
between the Aol and the information source dynamics

® The age of channel state information [Costa et al. (2015)]

& Modeled as a discrete-time Markov chain with two states

® Optimal samplings of

¢ Wiener processes [Sun et al. (2017)]

= Minimization of the mean squared error

¢ Discrete-time Markov chains [Sun and Cyr (2018)]

s Maximization of the mutual information
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Related Works (2)

An optimal sampling of Wiener processes [Sun et al. (2017)]
® The mean squared error
MSE = E[(Y; - ¥))?]

Y,: Actual state at time ¢, Y;: Displayed state at time ¢

® A state-dependent sampling policy is optimal

¢ An update is generated when |Y; — Y;| exceeds a threshold

® If sampling timings are independent of the monitored state,

MSE = E[A] E[A]: Mean Aol
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Outline of This Talk

® \We consider a monitoring system, where

¢ A continuous-time Markov chain (Y;);cg 1S monitored
¢ The Aol process (A;)er IS independent of (V) ter

® Main contributions:
¢ Derive an expression for an accuracy matrix R

[R];,; := Pr(Displayed state = j | Actual state = i)
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Outline of This Talk

® \We consider a monitoring system, where
¢ A continuous-time Markov chain (Y;);cg 1S monitored

¢ The Aol process (A;) er is independent of (Yy) ier

® Main contributions:
¢ Derive an expression for an accuracy matrix R

[R];,; := Pr(Displayed state = j | Actual state = i)

¢ Obtain lower and upper bounds for [R]; ;
= In particular, we show that [R];; = 1— g;E[A]

q;. Transition rate of (Y;) g from state i

¢ Develop a computational method for R in a special case
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Model Description
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Continuous-Time Markov Source

® The monitored continuous-time Markov chain (Yy);eg IS

¢ stationary ergodic with finite state space .# =1{1,2,..., M}
¢ characterized by transition rates q; ; (i,j€ .4, i # j)

= gi:= ) ¢; Transition rate from i
JEM,]#I
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Continuous-Time Markov Source

® The monitored continuous-time Markov chain (Yy);eg IS

¢ stationary ergodic with finite state space .# =1{1,2,..., M}
¢ characterized by transition rates q; ; (i,j€ .4, i # j)

= gi:= ) ¢; Transition rate from i
jEM, j#i
= Sojourn time at state i follows an exponential
distribution with mean 1/g;

= with probability g; ;/g;, a transition to state j occurs
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Continuous-Time Markov Source

® The monitored continuous-time Markov chain (Yy);eg IS

¢ stationary ergodic with finite state space .# =1{1,2,..., M}
¢ characterized by transition rates q; ; (i,j€ .4, i # j)

= gi:= ) ¢; Transition rate from i
JEM,]#I

® Q: Infinitesimal generator of (Y;)/er

= — i, j:i)
[(?]l,] '{ ciihi’ ‘i ?f i

® 1= (m,7>,..., ). Stationary probability vector of (Yy) rer

m; =Pr(Y, =1), Q=0 (Balance equation)
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Aol Process and Displayed State

® The Aol process (A;) e IS assumed to be

¢ stationary and ergodic
¢ independent of the Markovian information source (Y;) ter

® Y,;: The displayed state on the monitor at time ¢

Yt = Yt—At: reR

We have the following result:

Lemma 1. (Y;);cr is a stationary, ergodic
stochastic process with

Pr(Y;=i) =Pr(Y;=i) (=m;), ie M
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Main Results




Stochastic Matrices R and R (1)

We introduce two matrices R and R
® The (i, j)th element of R is given by

ri,j := Pr(Displayed state = j | Actual state =)
® The (i, j)th element of R is given by

rij := Pr(Actual state = j | Displayed state = i)

We can show that the following relation holds w.p. 1

T/2
1Y, =i} 1{Y;=j _ -
: f—T/z o= {Y: = jpde ri,;j also satisfies
I’i,j = lim

j—-— fT/Z a similar relation

T/2
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Stochastic Matrices R and R (2)

[R]; j=71i;:

Pr(Displayed state = j | Actual state =1)
[Rl; ; =7 ; := Pr(Actual state = j | Displayed state = i)

® From Lemma 1 and Baye’s formula, we have

il

. —T
rij = , and equivalentlyy, R=II"'R II
Ui
m; =Pr(YV; =i)=Pr(Y;=1), Il = diag(my, o,..., T )
® In particular, we have r;; =7;; =:r;

r; = Pr(Displayed state =i | Actual state =)
= Pr(Actual state =i | Displayed state =)

r; IS our primary quantity of interest
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Formulas of R and R

A(x) = Pr(A; < x): Probability distribution function of the Aol
® \We have the following result:
Theorem 2. R and R are given by

R= f exp[(IT'Q ' M)x|dA(x),
0

R :f exp[Qx]dA(x).

0
Q: Infinitesimal generator of (Y})cR
IT = diag(my, 2,..., T )

I1-'Q'II can be regarded as the infinitesimal generator
of the time-reversed process (Y_;)teRr
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Bounds of r; (1)

r; = Pr(Displayed state =i | Actual state =)
® \We can derive the following bounds for r;:
Theorem 3. r; is bounded by
a”(q;) < ri < 1-(a" (gmax) — @" (gi + Gmax))

a*(s) = E[e$41]: LST of the Aol distribution

q;. Transition rate from state i, @gmax := maxg;.

IX/4
® From the inequalities above, we further obtain

Corollary 1. If E[A] < oo, r; is bounded by

n (Ch + qmax)z

1-qElA] < 1; < 1-g;E[A] E[A°]
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Bounds of r; (2)

r; = Pr(Displayed state =i | Actual state =)
® \We have obtained the simple lower bound for r;:
ri = 1—q;E[A]

q;. Transition rate from state i, E[A]: Mean Aol

In order to ensure

ri=1—-¢ forsomee>0,
it is sufficient to design the system so that

E[A] = £

qi
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Special Case: Reversible Markovian
Information Source
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Reversible Markov Chain

® \We assume that (Y,);cg IS a reversible Markov chain

(Y_,):er follows the same probability law as (Y}) er
¢ A necessary and sufficient condition:
Tiq;ij = wijqji 1,j€# Detailed balance equations
® Under this assumption, we can show that

S := DQD! is a symmetric matrix

D .= (jia{;(\/;fl,\/?fz,...,‘\/?fA4)
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Computable Formula of R

S := DQD™! is a real symmetric matrix

® S is diagonizable by an orthogonal matrix U = (uy, uy, ..., uy)

M

-

S = Z YU,
k=1

v«: The kth largest eigenvalue of S
u;. A normalized right eigen vector of § associated with vy

We can verify that
2 Y]CER, k=12,....M
® y1=0 and y(<0, k=2,3,....M

® Wedefine 0 := -y (0=0; <0, <03--- <0y)
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Computable Formula of R

® Q is then diagonizable as

M
Q=) (0D 'upu, D D := diag(ym, Vz - o, V1)
k=1

Recall that R:f exp[(IT'Q ' M)x|dA(x), R:f exp[Qx]dA(x)
0 0

We can then show that

B M
R=R=en+) a* @D 'uru.D
k=2

e. Column vector with all elements equal to one
. Stationary probability vector
a*(s): LST of the Aol distribution
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Numerical Examples

20/24



Experimental Setting

® We employ three different Markov chains with 36 states
Grid Tree

Birth-Death

36 states

e =)

¢ Transition rates are fixed as g; =g (i € )
¢ Transition probabilities are homogeneous

For the monitoring system model, we use an FCFS D/M/1 queue

21/24



Numerical Result (1)

Trinlin 0= mi;; r; , Iransition rate g=1, Service rate u=64
lE

i - < i i i i i i - H
(RS - \

V. : : : : : : : : RN

-

4 H H H H H H H H H H >

- 4
>
g ]

s T

rmin

0.7 E

0.5

Upper bound

Lower bound
Birth-Death X
Tree

Grid o]

O 10 20 30 40 50 60
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There is little difference in ryin
among the three Markov chains

The lower bound 1 — gE[A]
well approximates rmin
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Numerical Result (2)
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A for each point is chosen
so that ryin IS maximized

When u is large,

& The value of ryjy IS
almost independent of
the transition structure

¢ The lower bound 1 - gE[A]
well approximates rmin
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Conclusion

® \We considered a monitoring system, where

¢ A continuous-time Markov chain (Y;);cgr 1S monitored
¢ The Aol process (A;)er is independent of (Yy) rer

® We derived an expression for the accuracy matrix R

[R);,; = Pr(Displayed state = j | Actual state = i)

® \We obtained a simple lower bound for r; := [R]; ;

r; = 1—q;E[A] q;. Transition rate from state i

® \We developed a computing method for R in the reversible case

Through numerical experiments, we observed that
the lower bound 1 — g;E[A] well approximates r;
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