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A time-varying information source is remotely monitored

Monitor Channel
Information

Source

Information
packet

Sender

● Sender node

sends observed sample to the monitor

● Receiver node (monitor)

displays the latest information received

The displayed information is always “older” than the current state

➨ Only partial information can be obtained from the monitor
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A time-varying information source is remotely monitored

Monitor Channel
Information

Source

Information
packet

Sender

The displayed information is always “older” than the current state

➨ Only partial information can be obtained from the monitor

● Age of Information (AoI)

A metric to characterize the freshness of information
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Monitor Channel
Information

Source
Sender

Generation Time
t − At

Current Time t
At : AoI at time t

● AoI: Elapsed time of the information since its generation

◆ The smaller the AoI, the fresher the information

● No assumptions on the information source are imposed

➨ The AoI defines “the freshness” in a wide class of systems
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Researches on the AoI have been expanding these years

● # of papers in IEEE international conferences

◆ 2012: ISIT (1), INFOCOM (1)

◆ 2013: ISIT (1)

◆ 2014: ISIT (2)

◆ 2015: ISIT (3), ICC (2)

◆ 2016: ISIT (4), INFOCOM (1), ICC (1)

◆ 2017: ISIT (12), INFOCOM (1), ICC (1), GLOBECOM (5)

◆ 2018: ISIT (13), INFOCOM (2), ICC (2), GLOBECOM (4)
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● In the first half, pioneering papers on the AoI are introduced

◆ Performance evaluation of VANETs [1]

◆ Theoretical analysis based on the queueing theory [2]

● In the second half, our recent work is presented

◆ Most previous works discuss only the mean AoI

◆ We characterize the probability distribution of the AoI

■ A general formula for the AoI distribution is derived
■ An application to single-server queues is presented

[1] S. Kaul et al., IEEE SECON 2011.
[2] S. Kaul et al., IEEE INFOCOM 2012.
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Vehiclar Adhoc Networks (VANETs)
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● Automobiles are interconnected through wireless channels

● They share each other’s information to enhance driving safety

◆ Its own position and driving speed

◆ Information observed by a sensor and camera

■ Position and speed of neighboring cars
■ Road surface condition



Performance measure in VANETs
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● The situation may change every second

◆ The value of information rapidly degenerates

➨ Throughput is not an appropreate performance measure

● Freshness (AoI) is proposed as a performance measure [1]

The i th car’s AoI on the j th car = t −Ti , j (t : Current time)

■ Ti , j : Time stamp of the last information i received from j

[1] S. Kaul et al., IEEE SECON 2011.
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Dn :=βn −αn

nth delay

Consider a specific pair (i , j ) of cars

● αn: Generation time of the nth update

● βn: Received time of the nth update

αn-1

βn-1

αn αn+1

βn

αn+2

βn+1 βn+2

AoI

Time

Car i 

Car j 

Dn-1
Dn

Dn+1

Dn+2



Average AoI
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● In [1], the time-average of the AoI (mean AoI)

1

T

∫T

0
At dt is proposed as a performance measure

At : AoI at time t

◆ The effect of packet management on the mean AoI
is evaluated with simulation experiments

AoI

Time

Dn-1
Dn

Dn+1

Dn+2

[1] S. Kaul et al., IEEE SECON 2011.
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Basically, the value of the AoI is determined by

1. Sampling interval Gn

◆ If intervals are too large, information updates rarely occur

2. Delay at communication channel Dn

◆ If each packet incurs a large delay,
the information cannot be kept fresh

Delay Dn

Sampling interval Gn

Monitor Channel
Information

Source
Sender



Basic properties of AoI (2)
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● In order to make the AoI small,

1. Sampling interval Gn should be set small

2. Communication delay Dn should be small

● There is a trade-off between Gn and Dn

Gn decreases ➨ the traffic load increases ➨ Dn increases

There exists an optimal sampling interval Gn

Delay Dn

Sampling interval Gn

Monitor Channel
Information

Source
Sender
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● Formulation of the delay using a queueing model [2]

Delay Dn

Sampling interval Gn

Monitor Channel
Information

Source
Sender

[2] S. Kaul et al., IEEE INFOCOM 2012.
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● Formulation of the delay using a queueing model [2]

Delay Dn

Sampling interval Gn

Monitor
Server, Buffer Information

Source
Sender

[2] S. Kaul et al., IEEE INFOCOM 2012.
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Gn =αn −αn−1

Dn =βn −αn

Delay Dn

Sampling interval Gn

Monitor
Server, Buffer Information

Source
Sender

● αn: Generation time of the nth update

● βn: Received time of the nth update

AoI

Timeαn-1 βn-1 αn αn+1βn αn+2βn+1 βn+2

Dn-1
Dn

Dn+1

Dn+2



Formula of Mean AoI (2)
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● The mean AoI E[A] is obtained as follows [2]

AoI

Timeαn-1 βn-1 αn αn+1βn αn+2βn+1 βn+2

Sn

E[A] = lim
T→∞

1

T

MT
∑

n=0

Sn, Sn =

(βn −αn−1)2

2
−

(βn −αn)2

2

Mt : Number of received updates by time t

[2] S. Kaul et al., IEEE INFOCOM 2012.
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E[A] = lim
T→∞

1

T

MT
∑

n=0

Sn, Sn =

(βn −αn−1)2

2
−

(βn −αn)2

2

● Sn is rewritten as follows:

Sn =

[(βn −αn)+ (αn −αn−1)]2

2
−

(βn −αn)2

2

=

(Dn +Gn)2
−D2

n

2

=

G2
n

2
+GnDn

◆ Gn: Inter-sampling time between (n −1)st and nth updates

◆ Dn: Delay of the nth sample



Formula of Mean AoI (4)
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Gn: Inter-sampling time between (n −1)st and nth updates

Dn: Delay of the nth sample

E[A] = lim
T→∞

MT

T
·

1

MT

MT
∑

n=0

Sn, Sn =

G2
n

2
+GnDn

● If the system is stationary and ergodic, we have [2]

E[A] =

E[G2]

2
+E[GnDn]

E[G]

● In general, Gn and Dn are not independent

➨ Analysis of E[A] is reduced to derivation of E[GnDn]

[2] S. Kaul et al., IEEE INFOCOM 2012.
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In [2], E[A] are analyzed for three queueing models

E[H ]: Mean service time, ρ: Traffic intensity (= E[H ]/E[G])

(M/M/1) E[A] =

(

1+
1

ρ
+

ρ2

1−ρ

)

E[H ]

(M/D/1) E[A] =

(

1

2
+

1

2(1−ρ)
+

1−ρ

ρe−ρ

)

E[H ]

*This explicit formula is derived in [Y. Inoue et al., IEEE ISIT 2017]

(D/M/1) E[A] =

(

1

2ρ
+

1

1−γ

)

E[H ]

γ is the unique solution of x = e−(1−x)/ρ (0 < x < 1)

[2] S. Kaul et al., IEEE INFOCOM 2012.
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● E[A] is a U-shaped function
of the sampling rate

◆ Trade-off between the
sampling rate and delay

Constant sampling interval
is efficient in terms of E[A]

● We set the mean service time E[H ] = 1
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● In the first half, pioneering papers on the AoI are introduced

◆ Performance evaluation of VANETs [1]

◆ Theoretical analysis based on the queueing theory [2]

● In the second half, our recent work is presented

◆ Most previous works discuss only the mean AoI

◆ We characterize the probability distribution of the AoI

■ A general formula for the AoI distribution is derived
■ An application to single-server queues is presented

[1] S. Kaul et al., IEEE SECON 2011.
[2] S. Kaul et al., IEEE INFOCOM 2012.
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● Although E[A] is a primary performance measure,
it is not sufficient to characterize the AoI process

◆ In particular, the deviation from E[A] cannot be evaluated

AoI

Time

Mean

AoI

Time

Mean

● We are thus interested in the probability distribution of the AoI

A(x): Long-run fraction of time that the AoI ≤ x



Peak AoI
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● Probability distribution of the peak AoI is easier to analyze [3]

(, AoI just before an update)

Apeak,n+1 = Dn + (βn+1 −βn)

Dn: Delay of the nth packet
βn: Received time of the nth packet

AoI

Time
αn-1 βn-1 αn αn+1βn αn+2βn+1 βn+2

Apeak,n-1

Apeak,n

Apeak,n+1
Apeak,n+2

[3] M. Costa et al., IEEE Trans. Inf. Theory, 62, 2016.



Outline of this work
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● We derive a general formula for the AoI distribution A(x):

A(x) =

1

E[G]

∫x

0

(

D(y)− Apeak(y)
)

dy

D(x): Delay distribution, Apeak(x): Peak AoI distribution

● Alternative formulas for E[A] are obtained from this equation

● We present an application to the FCFS GI/GI/1 queue

◆ The distribution of the AoI is given in terms of
the delay distribution

➨ We specialize this result to the M/GI/1 and GI/M/1 queues



General Formula for the AoI Distribution
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Classification of Information Packets
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● In general, information packets are classified into two types

◆ Informative packets, which contain newer information

◆ Non-informative packets, which contain older information

E.g.) FCFS system ➨ All packets are informative

LCFS system ➨ Non-informative packets exist

Older information

is NOT delivered

● If we observe only the stream of informative packets,
we have a FIFO (First-In-First-Out) queueing system



Sample-Path of General FIFO Queue
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We thus consider a general FIFO queue of informative packets

● A sample-path of a general FIFO queue is characterized by

αn (n = 0,1. . .): Arrival time of the nth packet

βn (n = 0,1. . .): Departure time of the nth packet

αn and βn are deterministic sequences (not random variables)

● We assume the followings

(i) αn ≤αn+1 (Packets are numbered in order of arrival)

(ii) αn ≤βn (A packet cannot depart before its arrival)

(iii) βn ≤βn+1 (Packets depart in a FIFO manner)

(iv) α0 ≤β0 = 0 <α1 (The system becomes empty at time 0)



AoI and Peak AoI
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1 {X },

{

1, X is true

0, X is false

● Mt : Index of the last departed packet

Mt =

∞
∑

n=1

1

{

βn ≤ t
}

● At : AoI at time t

At = t −αMt
(Current Time − Time-Stamp)

● Apeak,n: nth peak AoI

Apeak,n = lim
∆t→0+

Aβn−∆t (just before the nth departure)



Asymptotic Frequency Distributions
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At : AoI at time t Apeak,n: nth peak AoI

Dn: Delay of the nth packet

● A♯(x) , lim
T→∞

1

T

∫T

0

1 {At ≤ x}dt (The fraction of time with At ≤ x)

● A
♯

peak
(x) , lim

N→∞

1

N

N
∑

n=1

1

{

Apeak,n ≤ x
}

(

The relative number of
peak AoIs with Apeak,n ≤ x

)

● D♯(x), lim
N→∞

1

N

N
∑

n=1

1 {Dn ≤ x}

(

The relative number of
packets with Dn ≤ x

)

We assume that these limits exist for each x ≥ 0



General Formula for the AoI Distribution
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A♯(x): AoI distribution, A
♯

peak
(x): Peak AoI distribution

D♯(x): Delay distribution

● Assumption 1: The arrival rate λ is positive and finite

λ= lim
T→∞

1

T

∞
∑

n=1

1 {αn ≤ T } ∈ (0,∞)

● Assumption 2: The system is stable in the sense that

lim
T→∞

1

T

∞
∑

n=1

1

{

βn ≤ T
}

= lim
T→∞

1

T

∞
∑

n=1

1 {αn ≤ T } ( =λ )

Departure rate Arrival rate

Under these assumptions, we have

A♯(x) = λ

∫x

0

(

D♯(y)− A
♯

peak
(y)

)

dy



Outline of Proof (1)
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βn: Departure time of the nth packet

● In a time interval t ∈ [βn ,βn+1),
the AoI linearly increases from Dn to Apeak,n+1

◆ AoI just after an information update: Aβn
= Dn

◆ AoI just before an information update: Aβn+1−
= Apeak,n+1

➨

∫βn+1

βn

1 {At ≤ x}dt =

∫Apeak,n+1

Dn

1 {u ≤ x}du

AoI

Time

Dn

βn

Apeak,n+1

βn+1



Outline of Proof (2)
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∫βn+1

βn

1 {At ≤ x}dt =

∫Apeak,n+1

Dn

1 {u ≤ x}du

=

∫Apeak,n+1

0

1 {u ≤ x}du −

∫Dn

0
1 {u ≤ x}du

● For any x ≥ 0 and y ≥ 0, we have
∫y

0

1 {u ≤ x}du = min(x, y) =

∫x

0
1

{

u ≤ y
}

du

u

{u≤x}

x y

1

x

u
y x

1

y

0 0

when  x≤y when  y≤x
1 {u≤x}1
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∫βn+1

βn

1 {At ≤ x}dt =

∫Apeak,n+1

Dn

1 {u ≤ x}du

=

∫Apeak,n+1

0

1 {u ≤ x}du −

∫Dn

0
1 {u ≤ x}du

● For any x ≥ 0 and y ≥ 0, we have
∫y

0

1 {u ≤ x}du = min(x, y) =

∫x

0
1

{

u ≤ y
}

du

=

∫x

0

(

1−1

{

y ≤ u
})

du
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∫βn+1

βn

1 {At ≤ x}dt =

∫Apeak,n+1

Dn

1 {u ≤ x}du

=

∫Apeak,n+1

0

1 {u ≤ x}du −

∫Dn

0
1 {u ≤ x}du

● For any x ≥ 0 and y ≥ 0, we have
∫y

0

1 {u ≤ x}du = min(x, y) =

∫x

0
1

{

u ≤ y
}

du

=

∫x

0

(

1−1

{

y ≤ u
})

du

Therefore, we obtain
∫βn+1

βn

1 {At ≤ x}dt =

∫x

0

1 {Dn ≤ u}du −

∫x

0

1

{

Apeak,n+1 ≤ u
}

du
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∫βn+1

βn

1 {At ≤ x}dt =

∫x

0

1 {Dn ≤ u} du −

∫x

0

1

{

Apeak,n+1 ≤ u
}

du

● The distribution A♯(x) of the AoI is thus given by

A♯(x) = lim
T→∞

1

T

∫T

0

1 {At ≤ x}dt

= lim
T→∞

1

T

MT
∑

n=0

∫βn+1

βn

1 {At ≤ x}dt

= lim
T→∞

MT

T
·

1

MT

MT
∑

n=0

[
∫x

0

1 {Dn ≤ u}du −

∫x

0

1

{

Apeak,n+1 ≤ u
}

du

]

=λ

∫x

0

(

D♯(y)− A
♯

peak
(y)

)

dy



Stationarity and Ergodicity
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A♯(x) = λ

∫x

0

(

D♯(y)− A
♯

peak
(y)

)

dy holds sample-path-wise

● We assume that the system is stationary and ergodic

◆ Probability distributions of system-states are time-invariant

■ They are called stationary distributions

◆ Stationary distributions =
Probability distributions
on a sample-path

➨ A(x) = A♯(x), Apeak(x) = A
♯

peak
(x), and D(x)= D♯(x)

A(x) : Stationary AoI distribution
Apeak(x): Stationary peak AoI distribution
D(x) : Stationary delay distribution



Notation

35 / 50

We use the following convention throughout the discussion below

● For any non-negative random variable F ,

◆ F (x): Probability distribution function of F

Pr(F ≤ x) = F (x)

◆ f (x): Probability density function of F

f (x) =

d

d x
F (x), x ≥ 0

◆ f ∗(s): Laplace-Stieltjes transform (LST) of F

f ∗(s) = E
[

e−sF
]

=

∫

∞

0
e−sx dF (x), Re(s) > 0



Stationary Distribution of the AoI (1)
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A: AoI, Apeak: Peak AoI, D: Delay

● The density function of the stationary AoI

a(x) =
D(x)− Apeak(x)

E[G]

● The LST of the stationary AoI

a∗(s) =
d∗(s)−a∗

peak
(s)

sE[G]

● The kth moment of the stationary AoI (k = 1,2, . . .)

E[Ak ] =
E[(Apeak)k+1]−E[Dk+1]

(k +1)E[G]



Formulas for the Mean AoI

37 / 50

● The formula for the mean AoI E[A] [1]

(i) E[A] =

E[G2]

2
+E[GnDn]

E[G]

● We have the following alternative formulas for E[A]:

(ii) E[A] =
E [(Apeak)2]−E[D2]

2E[G]

(iii) E[A] = lim
s→0+

(−1) ·
d

ds

[

a∗(s)
]

, a∗(s) =
d∗(s)−a∗

peak
(s)

sE[G]

[1] S. Kaul et al., in Proc. of IEEE INFOCOM 2012, 2731–2735, Mar. 2012.



Stationary Distribution of the AoI (2)
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● The distribution A(x) of the AoI is given by

A(x) = λ

∫x

0

(

D(y)− Apeak(y)
)

dy

◆ The Delay is widely analyzed in the queueing theory

◆ We need an additional analysis on the peak AoI

● Below, we consider FCFS single-server queues

◆ In the GI/GI/1 queue, Apeak(x) is given in terms of D(x)

◆ In the M/GI/1 and GI/M/1 queues, we can obtain
formulas of the AoI from the known results for D(x)



Application to the FCFS GI/GI/1 Queue
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GI/GI/1 Queue
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● Inter-arrival times are assumed to be i.i.d. with

◆ general probability distribution function G(x)

◆ mean E[G] (λ= 1/E[G] follows)

● Processing times are assumed to be i.i.d. with

◆ general probability distribution function H(x)

◆ mean E[H ]

● The traffic intensity ρ,λE[H ]

◆ We assume ρ < 1 so that the system is stable

◆ We also assume that the system is stationary and ergodic



Peak AoI Distribution
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Gn: Inter-arrival time between the (n −1)st and nth packets

Hn: The service time of the nth packet

Dn: The delay of the nth packet

● If Gn+1 > Dn (The system becomes empty on departure)

Apeak,n+1 = Gn+1 +Hn+1

TimeArrival Arrival

Departure

(Update)
Departure

(Update)

Dn

Gn+1 Hn+1
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Gn: Inter-arrival time between the (n −1)st and nth packets

Hn: The service time of the nth packet

Dn: The delay of the nth packet

● If Gn+1 > Dn (The system becomes empty on departure)

Apeak,n+1 = Gn+1 +Hn+1

● If Gn+1 ≤ Dn (The next service starts just after departure)

Apeak,n+1 = Dn +Hn+1

We thus obtain

Apeak,n+1 = max(Gn+1,Dn)+Hn+1



Peak AoI Distribution (2)
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Gn: Inter-arrival time between the (n −1)st and nth packets

Hn: Service time of the nth packet

Dn: Delay of the nth packet

● Apeak,n = max(Gn+1,Dn)+Hn+1

● Gn+1, Dn, and Hn+1 are independent

➨ We obtain the LST of the stationary peak AoI

a∗

peak(s) =

[
∫

∞

0
e−sxG(x)dD(x)+

∫

∞

0
e−sx D(x)dG(x)

−E
[

1 {G = D}e−sG
]

]

h∗(s)



Summary of Results (GI/GI/1 Queue)
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● The LST of the stationary AoI

a∗(s) =
d∗(s)−a∗

peak
(s)

sE[G]

● The LST of the stationary peak AoI

a∗

peak(s) =

[
∫

∞

0
e−sxG(x)dD(x)+

∫

∞

0
e−sx D(x)dG(x)

−E
[

1 {G = D}e−sG
]

]

h∗(s)

● a∗(s) is given in terms of the delay distribution
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● Exponential inter-arrival time distribution G(x) = 1−e−λx

● General service time distribution H(x) (LST h∗(s))

◆ M/M/1 and M/D/1 [2] are special cases of this model

In this model, the LST of the system delay D is given by

d∗(s) =
(1−ρ)s

s −λ+λh∗(s)
·h∗(s)

➨ We obtain the LST of the stationary AoI distribution

a∗(s) = ρd∗(s) ·
1−h∗(s)

E[H ]s
+d∗(s +λ) ·

λ

s +λ
·h∗(s)

[2] S. Kaul et al., IEEE INFOCOM 2012.
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● The first two moments of the AoI distribution are given by

E[A] = E[D]+
1−ρ

ρh∗(λ)
·E[H ]

E[A2] = E[D2]+
2(1−ρ)

(ρh∗(λ))2

[

1+ρh∗(λ)+λh(1)(λ)
]

(E[H ])2

where

E[D] =
λE[H 2]

2(1−ρ)
+E[H ]

E[D2] =
λE[H 3]

3(1−ρ)
+

(λE[H 2])2

2(1−ρ)2
+

E[H 2]

1−ρ
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● General inter-arrival time distribution G(x) (LST g∗(s))

● Exponential processing time distribution H(x) = 1−e−µx

◆ D/M/1 queue [2] is a special case of this model

In this model, the system delay distribution is exponential

D(x)= 1−e−(1−γ)µx , d∗(s) =
(1−γ)µ

s + (1−γ)µ

where γ is a unique solution of γ= g∗(µ−µγ) and γ ∈ (0,1)

➨ We obtain the LST of the stationary AoI distribution

a∗(s) =

[

ρ ·

(1−γ)µ

s + (1−γ)µ
·

g∗(s + (1−γ)µ)−γ

1−γ
+

1− g∗(s)

sE[G]

]

µ

s +µ

[2] S. Kaul et al., IEEE INFOCOM 2012.



GI/M/1 Queue (2)

48 / 50

● The first two moments of the AoI distribution are given by

E[A] =
E[G2]

2E[G]
+

1

µ
−

g (1)((1−γ)µ)

(1−γ)µE[G]

E[A2] =
E[G3]

3E[G]
+ρE[G2]+

2

µ2

+

ρ

1−γ

[

g (2)((1−γ)µ)−2

(

1

(1−γ)µ
+

1

µ

)

g (1)((1−γ)µ)

]
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● Exponential inter-arrival and service times

G(x) = 1−e−λx , H(x) = 1−e−µx

● The LST of the stationary AoI is simplified as

a∗(s) =
(1−ρ)µ

s + (1−ρ)µ
−

(1−ρ)µs(s +λ+µ)

(s +µ)2(s +λ)

➨ We obtain an explicit formula for the AoI distribution A(x)

A(x) = 1−e−(1−ρ)µx
+

(

1

1−ρ
+ρµx

)

e−µx
−

1

1−ρ
·e−λx
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● The age of information (AoI) has been attracting
a considerable attention of reseach communities

◆ The AoI represents the freshness of information

◆ Most previous works focus only on the mean AoI

In our work,

● A general formula for the AoI distribution was derived

A(x) = λ

∫x

0

(

D(y)− Apeak(y)
)

dy, x ≥ 0

● We presented an application to single-server FCFS queues

● A full paper including results for LCFS queues is available at
https://arxiv.org/abs/1804.06139
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