The Probability Distribution of the Aol in Queues with Infinitely Many Servers

Yoshiaki Inoue

Osaka University, Japan

Remote Monitoring System

The state of an information source is monitored over time

Information Source (Stochastic Process)

The monitor displays the latest state information received

• A_t : Age of Information (AoI) at time t

 $A_t \triangleq t - \eta_t, \quad t \in \mathbb{R}$

 η_t : Time-stamp of the displayed information at time t

G_n: Inter-generation time of the (n-1)st and *n*th updates *D_n*: System delay of the *n*th update

• *n*th update is generated at $t = \alpha_n$ and received at $t = \beta_n$

$$\alpha_n = \alpha_{n-1} + G_n, \qquad \beta_n = \alpha_n + D_n$$

G_n: Inter-generation time of the (n-1)st and *n*th updates *D_n*: System delay of the *n*th update

• *n*th update is generated at $t = \alpha_n$ and received at $t = \beta_n$

$$\alpha_n = \alpha_{n-1} + G_n, \qquad \beta_n = \alpha_n + D_n$$

- Overtaken updates are discarded on reception
 - Non-overtaken updates are said to be effective

G_n: Inter-generation time of the (n-1)st and *n*th updates *D_n*: System delay of the *n*th update

• *n*th update is generated at $t = \alpha_n$ and received at $t = \beta_n$

$$\alpha_n = \alpha_{n-1} + G_n, \qquad \beta_n = \alpha_n + D_n$$

• Overtaken updates are discarded on reception

Non-overtaken updates are said to be effective

G_n: Inter-generation time of the (n-1)st and *n*th updates *D_n*: System delay of the *n*th update

• *n*th update is generated at $t = \alpha_n$ and received at $t = \beta_n$

$$\alpha_n = \alpha_{n-1} + G_n, \qquad \beta_n = \alpha_n + D_n$$

- Overtaken updates are discarded on reception
 - Non-overtaken updates are said to be effective

• Aol process is completely determined in terms of $(\alpha_{\ell}^{\dagger})_{\ell \in \mathbb{Z}} := (\alpha_n)_{n \in I}$ and $(\beta_{\ell}^{\dagger})_{\ell \in \mathbb{Z}} := (\beta_n)_{n \in I}$

• Set of effective updates $I := \{n; \beta_n < \min\{\beta_{n+1}, \beta_{n+2}, \ldots\}\}$

 α_{ℓ}^{\dagger} : Generation time of the ℓ th effective update β_{ℓ}^{\dagger} : Reception time of the ℓ th effective

• Aol A_t at time $t \in \mathbb{R}$ is given by

$$A_t = t - \alpha_{\ell}^{\dagger}, \quad \text{for } t \in [\beta_{\ell}^{\dagger}, \beta_{\ell+1}^{\dagger}), \quad \ell \in \mathbb{Z}$$

 α_{ℓ}^{\dagger} : Generation time of the ℓ th effective update β_{ℓ}^{\dagger} : Reception time of the ℓ th effective

• Aol A_t at time $t \in \mathbb{R}$ is given by

$$A_t = t - \alpha_{\ell}^{\dagger}, \quad \text{for } t \in [\beta_{\ell}^{\dagger}, \beta_{\ell+1}^{\dagger}), \quad \ell \in \mathbb{Z}$$

One major direction of Aol researches

Characterize AoI (mean, non-linear cost, distribution, etc.), given statistical properties of $(G_n)_{n \in \mathbb{Z}}$ and $(D_n)_{n \in \mathbb{Z}}$

• $(G_n)_{n \in \mathbb{Z}}$ is usually assumed to be i.i.d. random variables

Example 1) $G_n = \text{const.}$ Regular sampling

Example 2) $G_n \sim \text{EXP}(\lambda)$ Poisson sampling

- $(G_n)_{n \in \mathbb{Z}}$ is usually assumed to be i.i.d. random variables
- Modeling frameworks for system delay $(D_n)_{n \in \mathbb{Z}}$
 - Single-server queueing models
 - Formulates congestible resources
 - $D_n = [$ Service time $H_n] + [$ Queueing delay $W_n]$
 - Smaller $(G_n)_{n \in \mathbb{Z}}$ results in larger $(D_n)_{n \in \mathbb{Z}}$

- $(G_n)_{n \in \mathbb{Z}}$ is usually assumed to be i.i.d. random variables
- Modeling frameworks for system delay $(D_n)_{n \in \mathbb{Z}}$
 - Single-server queueing models
 - Formulates congestible resources
 - $D_n = [$ Service time $H_n] + [$ Queueing delay $W_n]$
 - Smaller $(G_n)_{n \in \mathbb{Z}}$ results in larger $(D_n)_{n \in \mathbb{Z}}$

• I.i.d. delays $(D_n)_{n \in \mathbb{Z}}$ independent of $(G_n)_{n \in \mathbb{Z}}$

- A model for modern networks and server clusters
- Equivalent to infinite-server queues

 $D_n = [$ Service time $H_n]$

- $(G_n)_{n \in \mathbb{Z}}$ i usually assumed to be i.i.d. random variables
- Modeling frameworks for system delay $(D_n)_{n \in \mathbb{Z}}$
 - Single-server queueing models
 - Formulates congestible resources
 - $D_n = [$ Service time $H_n] + [$ Queueing delay $W_n]$
 - Smaller $(G_n)_{n \in \mathbb{Z}}$ results in larger $(D_n)_{n \in \mathbb{Z}}$

◆ I.i.d. delays $(D_n)_{n \in \mathbb{Z}}$ independent of $(G_n)_{n \in \mathbb{Z}}$

- A model for modern networks and server clusters
- Equivalent to infinite-server queues
 - $D_n = [$ Service time $H_n]$

Related Works

Mean Aol E[A] in infinite-server queues has been studied

$$\mathbf{E}[A] = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A_t \mathrm{d}t$$

• Explicit formula for E[A] in the $M/M/\infty$ queue^[22]

- Model of cloud-gaming, closely related to the $D/GI/\infty$ queue^[23]
 - Approximate analysis of E[A] is given
- Characterization of E[A] in the GI/GI/ ∞ queue^[24]

[22] C. Kam et al, *IEEE Trans. Inf. Theory*, vol. 65, no. 3, 2016.
[23] R. Yates et al, *Proc. of IEEE INFOCOM 2017*, 2017.
[24] R. Talak et al, *arXiv:1810.04371*, 2018.

Contributions of This Study

 G_n : Inter-generation time, D_n : System delay

• We characterize the stationary distribution of the Aol

$$\Pr(A > x) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \mathbb{1} \{A_t > x\} dt$$

under a general setting ($GI/GI/\infty$ with loss):

- $(G_n)_{n \in \mathbb{Z}}$ and $(D_n)_{n \in \mathbb{Z}}$ follow general distributions
- $D_n = \infty$ may occur with non-zero probability
 - Corresponding to occurrences of losses
- We further derive specialized results for two selected models: $G_n = \text{const.} (D/GI/\infty)$ and $G_n \sim \text{EXP}(\lambda) (M/GI/\infty)$

General Case: GI/GI/ ∞ Queue with Loss

Model

• $(G_n)_{n \in \mathbb{Z}}$: Sequence of inter-generation times (i.i.d.)

• Mean generation rate $\lambda := 1/E[G_n]$

• $(H_n)_{n \in \mathbb{Z}}$: Sequence of system delays (i.i.d. and $D_n = H_n$)

• *H*: Generic random variable for system delays

• CDF $H(x) := Pr(H \le x)$, CCDF $\overline{H}(x) := 1 - H(x)$

• H(x) may be defective

 $\lim_{x \to \infty} \overline{H}(x) = \Pr(H = \infty) \quad (= \text{ probability of loss})$

Dynamics of AoI in $GI/GI/\infty$

Formula for the Aol Distribution

We assume that the system is stationary and ergodic

- A: Stationary Aol, A_{peak} : Stationary peak Aol
- H^{\dagger} : Stationary effective delay

Lemma 1^[6]. *A* has an absolutely continuous distribution with density $a(x) = \lambda P_I \cdot \{ \Pr(A_{\text{peak}} > x) - \Pr(H^{\dagger} > x) \}$

 P_I : Probability that an update becomes effective

[6] Y. Inoue et al., IEEE Trans. Inf. Theory, vol. 65, no. 12, 2019.

AoI Distribution in GI/GI/ ∞ (1)

• ℓ th peak Aol is given by

$$A_{\text{peak},\ell} = H_{\ell-1}^{\dagger} + B_{\ell}^{\dagger} \qquad B_{\ell}^{\dagger} := \mu$$

$$\begin{split} B_{\ell}^{\dagger} &:= \beta_{\ell}^{\dagger} - \beta_{\ell-1}^{\dagger} & \text{Inter-update time} \\ H_{\ell}^{\dagger} &:= \beta_{\ell}^{\dagger} - \alpha_{\ell}^{\dagger} & \text{System delay} \end{split}$$

AoI Distribution in GI/GI/ ∞ (1)

• ℓ th peak Aol is given by

$$\begin{split} A_{\text{peak},\ell} &= H_{\ell-1}^{\dagger} + B_{\ell}^{\dagger} \\ H_{\ell}^{\dagger} &:= \beta_{\ell}^{\dagger} - \beta_{\ell-1}^{\dagger} \quad \text{Inter-update time} \\ H_{\ell}^{\dagger} &:= \beta_{\ell}^{\dagger} - \alpha_{\ell}^{\dagger} \quad \text{System delay} \end{split}$$

$$\Pr(A_{\text{peak},\ell} > x) = \Pr\left(H_{\ell-1}^{\dagger} > x\right) + \Pr\left(H_{\ell-1}^{\dagger} \le x, H_{\ell-1}^{\dagger} + B_{\ell}^{\dagger} > x\right)$$

Substituting this relation into

$$a(x) = \lambda P_I \cdot \left\{ \Pr(A_{\text{peak}} > x) - \Pr(H^{\dagger} > x) \right\},\$$

we obtain

$$a(x) = \lambda P_I \cdot \Pr\left(H_{\ell-1}^{\dagger} \le x, H_{\ell-1}^{\dagger} + B_{\ell}^{\dagger} > x\right)$$

AoI Distribution in GI/GI/ ∞ (2)

$$a(x) = \lambda P_I \cdot \Pr\left(H_{\ell-1}^{\dagger} \le x, H_{\ell-1}^{\dagger} + B_{\ell}^{\dagger} > x\right)$$

We can show

$$\Pr\left(H_{\ell-1}^{\dagger} \le x, H_{\ell-1}^{\dagger} + B_{\ell}^{\dagger} > x\right) = \frac{H(x)}{P_I} \mathbb{E}\left[\prod_{n=1}^{\infty} \overline{H}\left(x - \sum_{i=1}^{n} G_i\right)\right],$$

so that we conclude as follows:

Theorem 2. Density function of the AoI is given by $a(x) = \lambda H(x) \mathbb{E}\left[\prod_{n=1}^{\infty} \overline{H}\left(x - \sum_{i=1}^{n} G_{i}\right)\right]$

Special Cases: D/GI/ ∞ and M/GI/ ∞ with Loss

AoI Distribution in $D/GI/\infty$

• Inter-generation times take a constant value τ

$$G_n = \tau, \quad n \in \mathbb{Z}$$

Theorem 3. Let $C_K := [K\tau, (K+1)\tau)$ (K = 0, 1, ...)

(i) Density function of the AoI in $D/GI/\infty$ is given by

$$a(x) = \frac{H(x)}{\tau} \prod_{n=0}^{K-1} \overline{H}(n\tau + x - K\tau), \quad x \in C_K,$$

(ii) CCDF of the AoI in D/GI/ ∞ is given by

$$\Pr(A > x) = \frac{1}{\tau} \int_{x-K\tau}^{\tau} \left(\prod_{n=0}^{K-1} \overline{H}(n\tau + u) \right) du$$
$$+ \frac{1}{\tau} \int_{0}^{x-K\tau} \left(\prod_{n=0}^{K} \overline{H}(n\tau + u) \right) du, \quad x \in C_{K}$$

AoI Distribution in $M/GI/\infty$

Inter-generation times follow an exponential distribution

 $\Pr(G_n \le x) = 1 - e^{-\lambda x}$

Theorem 4.

(i) Density function of the AoI in M/GI/ ∞ is given by $a(x) = \lambda H(x) \exp\left[-\lambda \int_0^x H(y) dy\right]$

(ii) CCDF of the AoI in M/GI/ ∞ is given by $Pr(A > x) = \exp\left[-\lambda \int_0^x H(y) dy\right]$

Stochastic Orders^[25]

Let *X* and *Y* denote non-negative random variables

• Usual stochastic order \leq_{st}

 $X \leq_{\text{st}} Y \Leftrightarrow \Pr(X > x) \leq \Pr(Y > x), \quad \forall x \ge 0$

• It is known that $X \leq_{st} Y$ if and only if $E[\phi(X)] \leq E[\phi(Y)]$ holds for all non-decreasing function $\phi(\cdot)$

• Hazard rate order \leq_{hr}

 $X \leq_{\operatorname{hr}} Y \Leftrightarrow [X \mid X > t] \leq_{\operatorname{st}} [Y \mid Y > t], \quad \forall t \ge 0$

Clearly, we have $X \leq_{hr} Y \Rightarrow X \leq_{st} Y$

[25] M. Shaked & J. Shanthikumar, *Stochastic Orders*, 2006.

Comparison of AoI in D/GI/ ∞ and M/GI/ ∞

$$a(x) = \frac{H(x)}{\tau} \prod_{n=0}^{K-1} \overline{H}(n\tau + x - K\tau), \quad x \in [K\tau, (K+1)\tau) \qquad \mathsf{D/GI/}\infty$$
$$a(x) = \lambda H(x) \exp\left[-\lambda \int_0^x H(y) \mathrm{d}y\right], \quad x \ge 0 \qquad \qquad \mathsf{M/GI/}\infty$$

• Utilizing these closed-form formulas, we can show

Theorem 13. For D/GI/ ∞ and M/GI/ ∞ queues with common generation rate λ and delay distribution $H(\cdot)$,

 $A^{\mathrm{D/GI}/\infty} \leq_{\mathrm{hr}} A^{\mathrm{M/GI}/\infty}$

 $A^{D/GI/\infty}$: Stationary AoI in D/GI/ ∞ $A^{M/GI/\infty}$: Stationary AoI in M/GI/ ∞

Numerical Example

Comparison of D/Gamma/ ∞ and M/Gamma/ ∞ System delay has E[H] = 1 and SD[H] = 0.5

- Tail probability Pr(A > x)decays quite faster in D/G/ ∞ than in M/G/ ∞
- Regular sampling is more effective than Random sampling

Summary

We considered the AoI distribution in infitite-server queues with loss

• Density function a(x) of the stationary AoI distribution

$$a(x) = \lambda H(x) \mathbb{E}\left[\prod_{n=1}^{\infty} \overline{H}\left(x - \sum_{i=1}^{n} G_{i}\right)\right], \quad x \ge 0 \qquad \qquad \text{GI/GI/}\infty$$

$$a(x) = \frac{H(x)}{\tau} \prod_{n=0}^{K-1} \overline{H}(n\tau + x - K\tau), \quad x \in [K\tau, (K+1)\tau) \qquad \mathsf{D/GI/}\infty$$

$$a(x) = \lambda H(x) \exp\left[-\lambda \int_0^x H(y) dy\right], \quad x \ge 0$$
 M/GI/ ∞

• Stochastic comparison of the AoI in D/GI/ ∞ and M/GI/ ∞

$$A^{\mathrm{D/GI}/\infty} \leq_{\mathrm{hr}} A^{\mathrm{M/GI}/\infty}$$