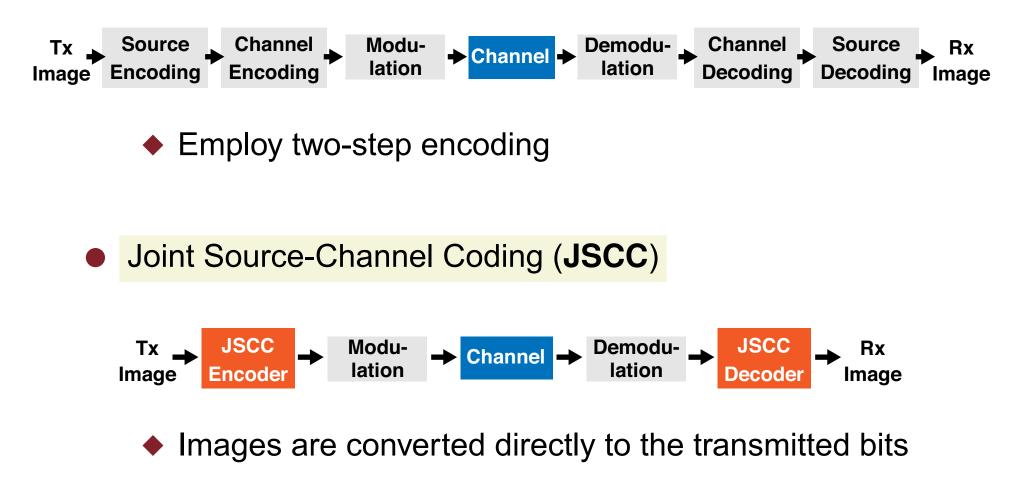
Deep Joint Source-Channel Coding and Modulation for Underwater Acoustic Communication

*Yoshiaki Inoue¹, Daisuke Hisano¹,

Kazuki Maruta², Yuko Hara-Azumi², Yu Nakayama³

Osaka University¹ Tokyo Institute of Technology² Tokyo University of Agriculture and Technology³

Ordinary image transmission systems



JSCCM

Joint Source-Channel Coding and Modulation (**JSCCM**)

• Encoder
$$f_{enc} : \mathbb{R}^{H \times W \times 3} \to \mathbb{C}^{K \times 1}$$

• Outputs **complex symbols** s from the input **image** x

• **Decoder**
$$f_{\text{dec}} : \mathbb{C}^{K \times 1} \to \mathbb{R}^{H \times W \times 3}$$

• Outputs an **images** \tilde{x} from the input **complex symbols** \tilde{s}

Deep JSCCM

JSCCM based on Deep Learning (**Deep JSCCM**)^[1]

Parameterization with deep neural networks (DNNs)

 $f_{\text{dec}, \theta}$: Decoder function

- The set of parameters θ are learned via backpropagaction
 - The error between input and output images are minimized
 - Utilize stochastic gradient descent (SGD) type optimizers
- Superiority over conventional methods has been reported^[1]

[1] E. Bourtsoulatze et al., in *IEEE Trans. Cogn. Commun. Netw.*, vol. 5, no. 3, pp. 567–579, 2019.

Deep JSCCM

JSCCM based on Deep Learning (**Deep JSCCM**)^[1]

- Parameterization with deep neural networks (DNNs)
 - $f_{\text{enc},\theta}$: Encoder function,

 $f_{\text{dec}, \theta}$: Decoder function

- The set of parameters θ are learned via backpropagaction
 - The error between input and output images are minimized
 - Utilize stochastic gradient descent (SGD) type optimizers
- Superiority over conventional methods has been reported^[1]
- However, previous works assume simple theoretical channels:

AWGN and Slow Reyleigh fading channels

Overview of This Work

 We extend the deep JSCCM technique to underwater acoustic image transmission

Underwater image transmission is a fairly challenging task

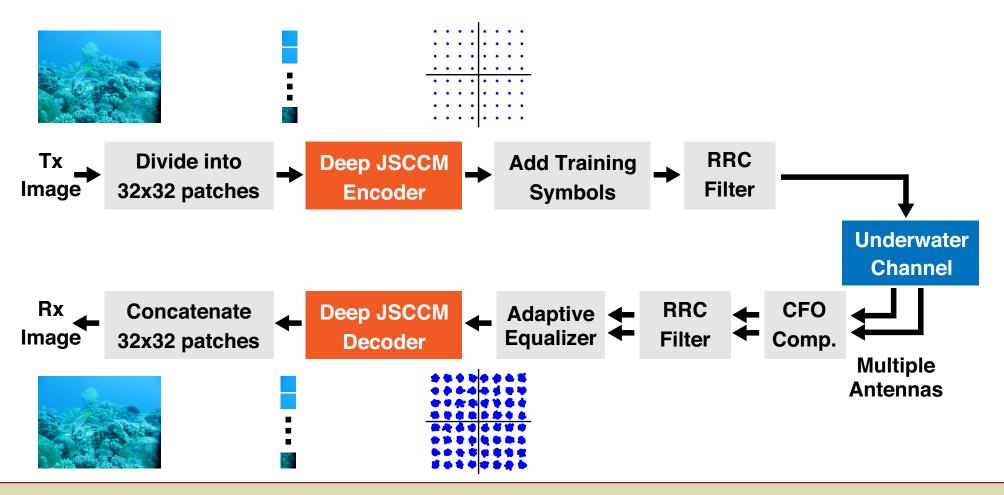
Limited transmission rate due to narrow bandwidth

- Severe intersymbol inference (ISI) by long-delay multipaths
- We present a new deep JSCCM approach incorporating
 - Long-delay multipath communication channel
 - Practical transmitter and receiver filters
 - Time-domain adaptive equalizer (TD-AE) to mitigate ISI
- Effectiveness of the proposed scheme is shown with simulation

System Model and Proposed Method

System Overview

- The system overview is shown below
 - Single-Input-to-Multi-Output (SIMO) channel



Channel Model

 $\mathbf{x} \in \mathbb{C}^{1 \times N_{s}}$: Transmission signal vector (N_{s} : # of samples) $\mathbf{y}_{i} \in \mathbb{C}^{1 \times N_{s}}$: Reception signal vector (*i*th antenna), Y: Matrix of (\mathbf{y}_{i})

• We consider the following linear AWGN channel model

Y = Hx + Z H: Channel matrix, Z: AWGN matrix

Channel Model

 $\mathbf{x} \in \mathbb{C}^{1 \times N_{s}}$: Transmission signal vector (N_{s} : # of samples) $\mathbf{y}_{i} \in \mathbb{C}^{1 \times N_{s}}$: Reception signal vector (*i*th antenna), Y: Matrix of (\mathbf{y}_{i})

We consider the following linear AWGN channel model

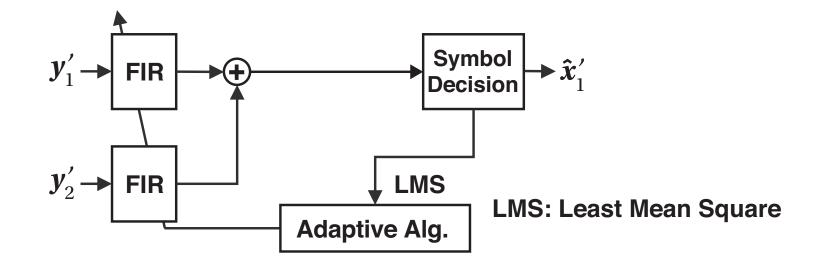
Y = Hx + Z H: Channel matrix, Z: AWGN matrix

• H consists of block matrices H_i (*i*: Antenna index)^[2]

$$h_{i}^{(k,l)} = \sqrt{L_{i}^{(k,l)}} \exp\left[j(2\pi f_{i}^{(k,l)} k T_{s} + \phi_{i}^{(k,l)})\right]$$

Diag. elements: Direct wave, Non-diag. elements: Delayed wave $L_i^{(k,l)}$: Relative power of delayed wave, $f_i^{(k,l)} := f_d \cos \alpha_i^{(k,l)}$, f_d : Doppler freq. T_s : Sampling freq., $\phi_i^{(k,l)}$: Initial phase, $\alpha_i^{(k,l)}$: Antenna incident angle [2] K. Shima et al., in *IEEE Access*, vol. 9, pp. 18361–18372, 2021.

Time-Domain Adaptive Equalizer (TD-AE)



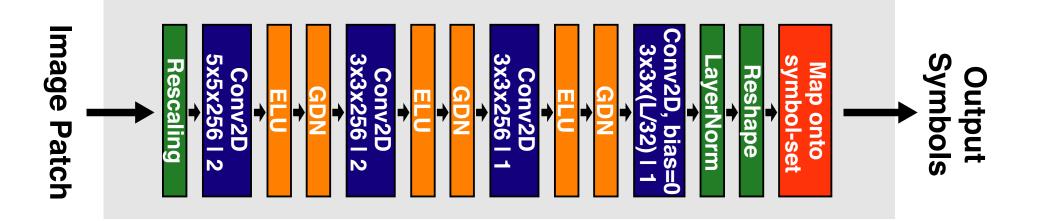
• Finite impulse response (FIR) filter exists for each antenna

FIR filters' outputs are combined

The coefficients of the FIR filters are updated successively

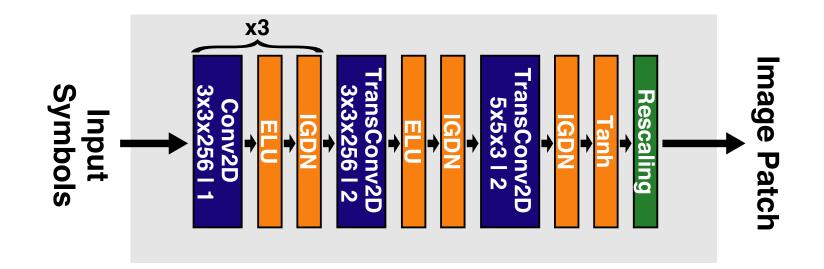
based on symbol-decision feedback

JSCCM Encoder



- Conv2D: Convolution layer (Notation: kernel_shape | strides)
- ELU: Exponential Linear Unit
- GDN: Generalized Divisive Normalization
- ♦ Map onto symbol-set
 ★ Necessary to employ the TD-AE
 - Outputs the nearest point on a (trained) symbol set $S \subset \mathbb{C}^M$ (*M*: # of candidate symbols)

JSCCM Decoder



 TransConv2D: Transposed convolution layer (Notation: kernel_shape | strides)

IGDN: Inverse Generalized Divisive Normalization

Training method (1)

Non-differentiable functions in the system

- Transmitter and receiver filters
- Linear AWGN communication channel
- TD-AE of the receiver

• For a non-differentiable function ψ , the following procedure enables backpropagation

• Consider the relation $y = \psi(x)$

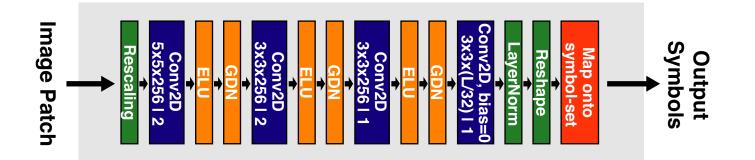
Replace this relation by the following equation:

 $y = x + \frac{\mathrm{sg}}{\psi(x)} - x)$

sg: Stop gradient operator (the input is regarded as a constant)

Training method (2)

- We employ the Adamax Optimizer^[3]
- Loss function: Mean squared error (MSE) of received image
 - Exception: Symbolset S in the encoder's last layer



Training of the symbol set *S*

- Jointly trained with other layers (using the Adamax optimizer)
- Loss function: MSE of the layer's input and output (in S)

[3] D. Kingma and J. Ba, in *Proc. ICLR 2015*, 2015.

Training Method (3)

Our model contains complicated non-differentiable layers

- Long-delay multipath communication channel
- Practical transmitter and receiver filters
- Time-domain adaptive equalizer (TD-AE) to mitigate ISI
- It is difficult to train the encoder/decoder from sctatch
- **Two-step training procedure** to overcome this difficulty
 - Pre-Training: Employs a simple AWGN channel model
 - Suitable initial values for the parameters are obtained
 - Main-Training: Employs the targeted system model

Numerical Simulation

Simulation Parameters

 We employed a two-path channel model

For comparison, we employed

- Image compression: JPEG, JPEG2000
- Modulation:
 - QPSK, 16QAM
- Forward error correction:
 - Turbo code (1/2, 3/4)

(Channel parameters are taken from [4])

	· ·	/
	Item	Value
	# of antennas	2
d	Carrier freq.	300 kHz
	System bandwidth	200 kHz
	# of training symbols	4000
	Roll-off rate of RRC filters	0.2
	# of FIR taps in TD-AE	21
	SNR	18–26 dB
	Relative moving speed	1 m/s
	Relative delay of delay wave	520 samples
1:	Relative power ratio $L_i^{(k,l)}$	0.4
)	Speed of sound	1500 m/s
/	Incident angle $\alpha_{i}^{(k,l)}$	Random
	Initial phase $\phi_i^{(k,l)}$	Random

[4] H. Fukumoto et al., in Proc. Global Oceans 2020, 2020.

Datasets

Training dataset : Downsampled Imagenet^[5]

Consists of many 32 × 32 color images
 (1,281,167 for training and 50,000 for validation)

[5] P. Chrabaszcz et al., arXiv preprint, arXiv:1707.08819, 2017.

Datasets

Training dataset : Downsampled Imagenet^[5]

Consists of many 32 × 32 color images
 (1,281,167 for training and 50,000 for validation)

• Test dataset : Underwater image dataset^[6] (890 images)

[5] P. Chrabaszcz et al., arXiv preprint, arXiv:1707.08819, 2017.
[6] C. Li et al., in *IEEE Trans. Image Process.*, vol. 29, pp. 4376–4389, 2020.

Datasets

Training dataset : Downsampled Imagenet^[5]

Consists of many 32 × 32 color images
 (1,281,167 for training and 50,000 for validation)

Test dataset : Underwater image dataset^[6] (890 images)

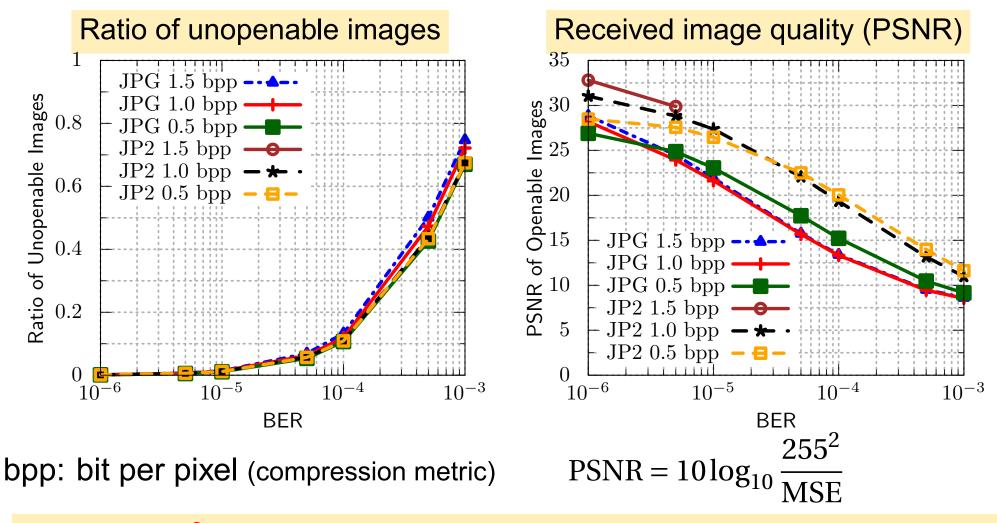
Preprocessed to obtain equal-size images

- Extract images with (width/height) $\geq 4/3$ (825 images)
- Resize and crop to obtain images with 256 × 192 pixels

[5] P. Chrabaszcz et al., arXiv preprint, arXiv:1707.08819, 2017.
[6] C. Li et al., in *IEEE Trans. Image Process.*, vol. 29, pp. 4376–4389, 2020.

Selection of Baseline Scheme (1)

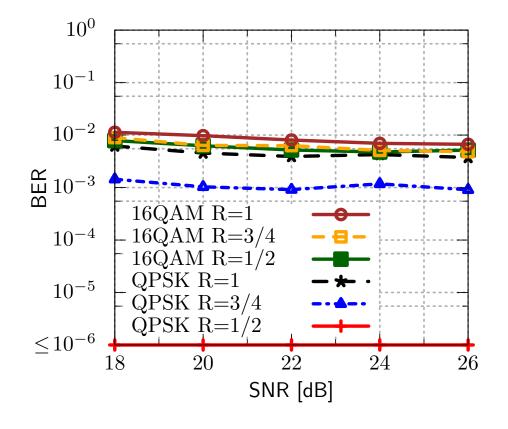
• Effect of the bit error rate (BER) on the received image quality



BER $\leq 10^{-6}$ is required to stably receive JPEG/JPEG2000 images

Selection of Baseline Scheme

BER curves for QPSK and 16QAM (R: Code rate)



• **QPSK** (R = 1/2):

• The only scheme with $BER \le 10^{-6}$ (among those in the figure)

The baseline scheme we employ for comparison

In what follows, we suppose BER = 0 for $SNR \ge 18dB$

Performance Evaluation (1)

Trained the encoder/decoder with 0.5 symbols per pixel (spp)

◆ Each 256 × 192 image is converted to 24,576 symbols

- The symbol-set size |*S*| was set to 256
- 70,000 training steps (including 40,000 pre-training steps)

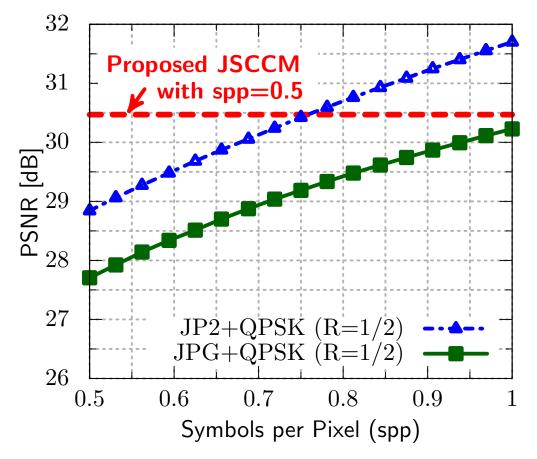
Comparison of the proposed JSCCM with the baseline scheme

• Average PSNR of received images for SNR = 18 dB

Proposed JSCCM	QPSK + JPEG2000	QPSK + JPEG
30.470	28.842	27.706

Performance Evaluation (2)

Comparison of the proposed JSCCM with the baseline scheme



- (Figure) Effect of the # of transmitted symbols on the received image quality
- To achieve the same quality as the proposed JSCCM
 - For JPEG2000, we need
 ~ 50% additional symbols
 - For JPEG, we need
 ~ 100% additional symbols
- Large improvement in the transmission rate
 by the proposed JSCCM

Summary

 Proposed a deep JSCCM scheme for underwater acoustic image transmission, considering

- Long-delay multipath communication channel
- Practical transmitter and receiver filters
- Time-domain adaptive equalizer (TD-AE) to mitigate ISI
- Showed its effectiveness with simulation:
 - ~ 50% speed up compared with JPEG2000+QPSK
 - ♦ ~ 100% speed up compared with JPEG+QPSK
- Next step: Performance evaluation with real implementation

Example of Received Images

Original

JPEG2000 + QPSK

Proposed JSCCM

JPEG + QPSK

Trained Symbolset

