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● Ordinary image transmission systems
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◆ Employ two-step encoding

● Joint Source-Channel Coding (JSCC)
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◆ Images are converted directly to the transmitted bits
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Joint Source-Channel Coding and Modulation (JSCCM)
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● Encoder fenc : RH×W ×3 →C
K×1

◆ Outputs complex symbols s from the input image x

● Decoder fdec : CK×1 →R
H×W ×3

◆ Outputs an images x̃ from the input complex symbols s̃
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JSCCM based on Deep Learning (Deep JSCCM) [1]

● Parameterization with deep neural networks (DNNs)

◆ fenc,θ: Encoder function , fdec,θ: Decoder function

● The set of parameters θ are learned via backpropagaction

◆ The error between input and output images are minimized
◆ Utilize stochastic gradient descent (SGD) type optimizers

● Superiority over conventional methods has been reported [1]

[1] E. Bourtsoulatze et al., in IEEE Trans. Cogn. Commun. Netw.,
vol. 5, no. 3, pp. 567–579, 2019.
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JSCCM based on Deep Learning (Deep JSCCM) [1]

● Parameterization with deep neural networks (DNNs)

◆ fenc,θ: Encoder function , fdec,θ: Decoder function

● The set of parameters θ are learned via backpropagaction

◆ The error between input and output images are minimized
◆ Utilize stochastic gradient descent (SGD) type optimizers

● Superiority over conventional methods has been reported [1]

● However, previous works assume simple theoretical channels:

◆ AWGN and Slow Reyleigh fading channels



Overview of This Work

5 / 22

● We extend the deep JSCCM technique to
underwater acoustic image transmission

● Underwater image transmission is a fairly challenging task

◆ Limited transmission rate due to narrow bandwidth
◆ Severe intersymbol inference (ISI) by long-delay multipaths

● We present a new deep JSCCM approach incorporating

◆ Long-delay multipath communication channel
◆ Practical transmitter and receiver filters
◆ Time-domain adaptive equalizer (TD-AE) to mitigate ISI

● Effectiveness of the proposed scheme is shown with simulation
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● The system overview is shown below

◆ Single-Input-to-Multi-Output (SIMO) channel
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x ∈C
1×Ns : Transmission signal vector (Ns: # of samples)

yi ∈C
1×Ns: Reception signal vector (i th antenna), Y: Matrix of (yi )

● We consider the following linear AWGN channel model

Y = Hx+Z H: Channel matrix, Z: AWGN matrix
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x ∈C
1×Ns : Transmission signal vector (Ns: # of samples)

yi ∈C
1×Ns: Reception signal vector (i th antenna), Y: Matrix of (yi )

● We consider the following linear AWGN channel model

Y = Hx+Z H: Channel matrix, Z: AWGN matrix

● H consists of block matrices Hi (i : Antenna index) [2]

h(k,l )
i

=

√

L(k,l )
i

exp
[

j (2π f (k,l )
i

kTs +φ
(k,l )
i

)
]

Diag. elements: Direct wave, Non-diag. elements: Delayed wave

L(k,l )
i

: Relative power of delayed wave, f (k,l )
i

:= fd cosα(k,l )
i

, fd : Doppler freq.
Ts : Sampling freq., φ

(k,l )
i

: Initial phase, α
(k,l )
i

: Antenna incident angle

[2] K. Shima et al., in IEEE Access, vol. 9, pp. 18361–18372, 2021.
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LMS: Least Mean Square

● Finite impulse response (FIR) filter exists for each antenna

◆ FIR filters’ outputs are combined

● The coefficients of the FIR filters are updated successively

based on symbol-decision feedback
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◆ Conv2D: Convolution layer (Notation: kernel_shape | strides)

◆ ELU: Exponential Linear Unit
◆ GDN: Generalized Divisive Normalization

◆ Map onto symbol-set ⋆Necessary to employ the TD-AE

■ Outputs the nearest point on a (trained) symbol set S ⊂C
M

(M : # of candidate symbols)
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◆ TransConv2D: Transposed convolution layer
(Notation: kernel_shape | strides)

◆ IGDN: Inverse Generalized Divisive Normalization



Training method (1)

12 / 22

● Non-differentiable functions in the system

◆ Transmitter and receiver filters
◆ Linear AWGN communication channel
◆ TD-AE of the receiver

● For a non-differentiable function ψ,
the following procedure enables backpropagation

◆ Consider the relation y = ψ(x)

◆ Replace this relation by the following equation:
y = x + sg(ψ(x)−x)

sg: Stop gradient operator (the input is regarded as a constant)
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● We employ the Adamax Optimizer [3]

● Loss function: Mean squared error (MSE) of received image

◆ Exception: Symbolset S in the encoder’s last layer
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● Training of the symbol set S

◆ Jointly trained with other layers (using the Adamax optimizer)
◆ Loss function: MSE of the layer’s input and output (in S)

[3] D. Kingma and J. Ba, in Proc. ICLR 2015, 2015.
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● Our model contains complicated non-differentiable layers

◆ Long-delay multipath communication channel
◆ Practical transmitter and receiver filters
◆ Time-domain adaptive equalizer (TD-AE) to mitigate ISI

➨ It is difficult to train the encoder/decoder from sctatch

● Two-step training procedure to overcome this difficulty

◆ Pre-Training: Employs a simple AWGN channel model
➨ Suitable initial values for the parameters are obtained

◆ Main-Training: Employs the targeted system model



Numerical Simulation

15 / 22
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● We employed a two-path
channel model

For comparison, we employed

◆ Image compression:
JPEG, JPEG2000

◆ Modulation:
■ QPSK, 16QAM

◆ Forward error correction:
■ Turbo code (1/2, 3/4)

(Channel parameters are taken from [4])

Item Value
# of antennas 2

Carrier freq. 300 kHz
System bandwidth 200 kHz
# of training symbols 4000

Roll-off rate of RRC filters 0.2

# of FIR taps in TD-AE 21

SNR 18–26 dB
Relative moving speed 1 m/s
Relative delay of delay wave 520 samples
Relative power ratio L(k,l )

i
0.4

Speed of sound 1500 m/s
Incident angle α

(k,l )
i

Random
Initial phase φ

(k,l )
i

Random

[4] H. Fukumoto et al., in Proc. Global Oceans 2020, 2020.



Datasets

17 / 22

[5] P. Chrabaszcz et al., arXiv preprint, arXiv:1707.08819, 2017.

● Training dataset : Downsampled Imagenet [5]

◆ Consists of many 32×32 color images
(1,281,167 for training and 50,000 for validation)
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[5] P. Chrabaszcz et al., arXiv preprint, arXiv:1707.08819, 2017.
[6] C. Li et al., in IEEE Trans. Image Process., vol. 29, pp. 4376–4389, 2020.

● Training dataset : Downsampled Imagenet [5]

◆ Consists of many 32×32 color images
(1,281,167 for training and 50,000 for validation)

● Test dataset : Underwater image dataset [6] (890 images)
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[5] P. Chrabaszcz et al., arXiv preprint, arXiv:1707.08819, 2017.
[6] C. Li et al., in IEEE Trans. Image Process., vol. 29, pp. 4376–4389, 2020.

● Training dataset : Downsampled Imagenet [5]

◆ Consists of many 32×32 color images
(1,281,167 for training and 50,000 for validation)

● Test dataset : Underwater image dataset [6] (890 images)

◆ Preprocessed to obtain equal-size images
■ Extract images with (width/height) ≥ 4/3 (825 images)

■ Resize and crop to obtain images with 256×192 pixels
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Ratio of unopenable images Received image quality (PSNR)

● Effect of the bit error rate (BER) on the received image quality

0

0.2

0.4

0.6

0.8

1

10−6 10−5 10−4 10−3

R
a
ti
o
o
f
U
n
o
p
en
a
b
le

Im
a
g
es

BER

JPG 1.5 bpp
JPG 1.0 bpp
JPG 0.5 bpp
JP2 1.5 bpp
JP2 1.0 bpp
JP2 0.5 bpp

0

5

10

15

20

25

30

35

10−6 10−5 10−4 10−3

P
S
N
R
o
f
O
p
en
a
b
le

Im
a
g
es

BER

JPG 1.5 bpp
JPG 1.0 bpp
JPG 0.5 bpp
JP2 1.5 bpp
JP2 1.0 bpp
JP2 0.5 bpp

bpp: bit per pixel (compression metric) PSNR = 10log10

2552
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BER ≤≤≤ 10−6 is required to stably receive JPEG/JPEG2000 images
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◆ QPSK (R = 1/2) :

■ The only scheme with BER ≤ 10−6

(among those in the figure)

➨The baseline scheme
we employ for comparison

In what follows, we suppose
BER = 0 for SNR ≥ 18dB

● BER curves for QPSK and 16QAM (R: Code rate)
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● Trained the encoder/decoder with 0.5 symbols per pixel (spp)

◆ Each 256×192 image is converted to 24,576 symbols

● The symbol-set size |S| was set to 256

● 70,000 training steps (including 40,000 pre-training steps)

Comparison of the proposed JSCCM with the baseline scheme

● Average PSNR of received images for SNR = 18 dB

Proposed JSCCM QPSK + JPEG2000 QPSK + JPEG
30.470 28.842 27.706
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(Figure) Effect of the # of
transmitted symbols on
the received image quality

● To achieve the same quality
as the proposed JSCCM

◆ For JPEG2000, we need
∼ 50% additional symbols

◆ For JPEG, we need
∼ 100% additional symbols

➨ Large improvement in

the transmission rate

by the proposed JSCCM

Comparison of the proposed JSCCM with the baseline scheme
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● Proposed a deep JSCCM scheme for underwater
acoustic image transmission, considering

◆ Long-delay multipath communication channel
◆ Practical transmitter and receiver filters
◆ Time-domain adaptive equalizer (TD-AE) to mitigate ISI

● Showed its effectiveness with simulation:

◆ ∼∼∼ 50% speed up compared with JPEG2000+QPSK

◆ ∼∼∼ 100% speed up compared with JPEG+QPSK

● Next step: Performance evaluation with real implementation
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Original Proposed JSCCM

JPEG2000 + QPSK JPEG + QPSK
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